
Distributed Private-Key Generators for
Identity-Based Cryptography⋆

Aniket Kate and Ian Goldberg

Cheriton School of Computer Science
University of Waterloo, Canada

{akate,iang}@cs.uwaterloo.ca

Abstract. An identity-based encryption (IBE) scheme can greatly reduce the
complexity of sending encrypted messages. However, an IBE schemenecessarily
requires a private-key generator (PKG), which can create private keys for clients,
and so can passively eavesdrop on all encrypted communications. Although a dis-
tributed PKG has been suggested as a way to mitigate this key escrow problem
for Boneh and Franklin’s IBE scheme, the security of this distributed protocol
has not been proven. Further, a distributed PKG has not been considered for any
other IBE scheme.
In this paper, we design distributed PKG setup and private key extraction pro-
tocols for three important IBE schemes; namely, Boneh and Franklin’sBF-IBE,
Sakai and Kasahara’s SK-IBE, and Boneh and Boyen’s BB1-IBE. We give special
attention to the applicability of our protocols to all possible types of bilinear pair-
ings and prove their IND-ID-CCA security in the random oracle model against
a Byzantine adversary. Finally, we also perform a comparative analysis of these
protocols and present recommendations for their use.

1 Introduction

In 1984, Shamir [2] introduced the notion of identity-basedcryptography (IBC) as an
approach to simplify public-key and certificate managementin a public-key infrastruc-
ture (PKI) and presented an open problem to provide an identity-based encryption (IBE)
scheme. After seventeen years, Boneh and Franklin [3] proposed the first practical and
secure IBE scheme (BF-IBE) using bilinear maps. After this seminal work, in the last
few years, significant progress has been made in IBC (for details, refer to a recent book
on IBC [4] and references therein).

In an IBC system, a client chooses an arbitrary string such asher e-mail address
to be her public key. With a standardized public-key string format, an IBC scheme
completely eliminates the need for public-key certificates. As an example, in an IBE
scheme, a sender can encrypt a message for a receiver knowingjust the identity of
the receiver and importantly, without obtaining and verifying the receiver’s public-key
certificate. Naturally, in such a system, a client herself isnot capable of generating
a private key for her identity. There is a trusted party called a private-key generator
(PKG) which performs the system setup, generates a secret called themaster keyand

⋆ An extended version of this paper is avaiable [1].



provides private keys to clients using it. As the PKG computes a private key for a client,
it can decrypt all of her messages passively. This inherentkey escrowproperty asks for
complete trust in the PKG, which is difficult to find in many realistic scenarios.

Importantly, the amount of trust placed in the holder of an IBC master key is far
greater than that placed in the holder of the private key of a certifying authority (CA) in a
PKI. In a PKI, in order to attack a client, the CA has to actively generate a fake certificate
for the client containing a fake public key. In this case, it is often possible for the client
to detect and prove the malicious behaviour of the CA. The CA cannot perform any
passive attack; specifically, it cannot decrypt a message encrypted for the client using
a client-generated public key and it cannot sign some document for the client, if the
verifier gets a correct certificate from the client. On the other hand, in IBC, 1) knowing
the master key, the PKG can decrypt or sign the messages for any client, without any
active attack and consequent detection, 2) the PKG can make clients’ private keys public
without any possible detection, and 3) in a validity-period-based key revocation system
[3], bringing down the PKG is sufficient to bring the system toa complete halt (single
point of failure), once the current validity period ends. Therefore, the PKGin IBC needs
to be far more trusted than the CA in a PKI. This has been considered as a reason for
the slow adoption of IBC schemes outside of closed organizational settings.

Boneh and Franklin [3] suggest distributing a PKG in their BF-IBE scheme to solve
these problems. In an(n, t)-distributed PKG, the master key is distributed amongn
PKG nodes such that a set of nodes of sizet or smaller cannot compute the master key,
while a client extracts her private key by obtaining private-key shares from anyt + 1
or more nodes; she can then use the system’s public key to verify the correctness of her
thus-extracted key. Boneh and Franklin [3] proposeverifiable secret sharing(VSS) [5]
of the master key among multiple PKGs to design a distributedPKG and also hint
towards a completely distributed approach using the distributed (shared) key generation
(DKG) schemes of Gennaro et al. [6]; however, they do not provide a formal security
model and a proof. Further, none of the IBE schemes defined after [3] consider the
design of a distributed PKG.

Although various proposed practical applications using IBE, such as pairing-based
onion routing [7] or verifiable random functions from identity-based key encapsula-
tion [8], require a distributed PKG as a fundamental need, there is no distributed PKG
available for use yet. This practical need forms the motivation of this work.

Related Work. Although we are defining protocols for IBE schemes, as we are concen-
trating on distributed cryptographic protocols and due to space constraints, we do not
include a comprehensive account of IBE. We refer readers to [9] for a detailed discus-
sion on the various IBE schemes and frameworks defined in the literature. Pursuant to
this survey, we work in the random oracle model for efficiencyand practicality reasons.

None of the IBE schemes except BF-IBE considered distributed PKG setup and
key extraction protocols in their design. Recently, Geisler and Smart [10] defined a dis-
tributed PKG for Sakai and Kasahara’s SK-IBE [11]; however,their solution against
a Byzantine adversary has an exponential communication complexity and a formal
security proof is also not provided. We overcome both of these barriers in our dis-
tributed PKG for SK-IBE: our scheme is secure against a Byzantine adversary and has



the same polynomial-time communication complexity as their scheme, which is secure
only against an honest-but-curious adversary; we also provide a formal security proof.

Other than [10], there have been a few other efforts in the literature to counter the
inherent key escrow and single point of failure issues in IBE. Al-Riyami and Paterson
[12] introducecertificateless public-key cryptography(CL-PKC) to address the key es-
crow problem by combining IBC with public-key cryptography. Their elegant approach,
however, does not address the single point of failure problem. Although it is possible
to solve the problem by distributing their PKG using a VSS (which employs a trusted
dealer to generate and distribute the key shares), which is inherently cheaper than a
DKG-based PKG by a linear factor, it is impossible to stop a dealer’s active attacks
without completely distributed master-key generation. Further, as private-key extrac-
tions are less frequent than encryptions, it is certainly advisable to use more efficient
options during encryption rather than private-key extraction. Finally, with the require-
ment of online access to the receiver’s public key, CL-PKC becomes ineffective for
systems without continuous network access, where IBC is considered to be an impor-
tant tool. Lee et al. [13] and Gangishetti et al. [14] proposevariants of the distributed
PKG involving a more trustworthy key generation centre (KGC) and other key privacy
authorities (KPAs). As observed by Chunxiang et al. [15] for[13], these approaches
are, in general, vulnerable to passive attack by the KGC. In addition, the trust guaran-
tees required by a KGC can be unattainable in practice. Goyal[16] reduces the required
trust in the PKG by restricting its ability to distribute a client’s private key. This does
not solve the problem of single point of failure. Further, the PKG in his system still can
decrypt the clients’ messages passively, which leaves a secure and practical implemen-
tation of distributed PKGs wanting.

Threshold versions of signature schemes obtained from someIBE schemes using
the Naor transform have been proposed and proved previously[17, 18]. However, these
solutions do not work for the corresponding IBE scheme. Thisis due to the inherent
secret nature of a client’s private keys and corresponding shares as compared to the in-
herent public nature of signatures and corresponding signature shares. While designing
IBE schemes with a distributed PKG, we have to make sure that aPKG node cannot
derive more information than the private-key share it generates for a client and that
private-key shares are not available in public as commitments.

Our Contributions. We present distributed PKGs for all three important IBE frame-
works: namely, full-domain-hash IBEs, exponent-inversion IBEs and commutative-blin-
ding IBEs [9]. We propose distributed PKG setups and distributed private-key extraction
protocols for BF-IBE [3], SK-IBE [11], and Boneh and Boyen’s(modified) BB1-IBE [9,
19] schemes. The novelty of our protocols lies in achieving the secrecy of a client pri-
vate key from the generating PKG nodes without compromisingthe efficiency. We re-
alize this with an appropriate use of non-interactive proofs of knowledge, pairing-based
verifications, and DKG protocols with and without the uniform randomness property.
Based on the choice of the DKG protocol, our distributed PKGscan work in the syn-
chronous or asynchronous communication model. In terms of feasibility, we ensure that
our protocols work for all three pairing types defined by Galbraith et al. [20].

We prove the adaptive chosen ciphertext security (IND-ID-CCA) of the defined
schemes in the random oracle model. Interestingly, compared to the security proofs



for the respective IBE schemes with a single PKG, there are noadditional security re-
duction factors in our proofs, even though the underlying DKG protocol used in the
distributed PKGs does not provide a guarantee about the uniform randomness for the
generated master secrets. To the best of our knowledge, there is no threshold cryp-
tographic protocol available in the literature where a similar tight security reduction
has been proven while using a DKG without the (more expensive) uniform random-
ness property. Finally, using operation counts, key sizes,and possible pairing types, we
compare the performance of three distributed PKGs we define.

2 Preliminaries

2.1 Cryptographic Background

Bilinear Pairings. For three cyclic groupsG, Ĝ, andGT (all of which we shall write
multiplicatively) of the same prime orderp, anadmissible bilinear pairinge is a map
e : G× Ĝ → GT with thebilinearity, non-degeneracyandadmissibilityproperties. For
a detailed mathematical discussion of bilinear pairings refer to [21]. We consider all
three types of pairings [20] for prime order groups: namely,type1, 2, and3. In type1 or
symmetricpairings, an isomorphismφ : Ĝ → G as well as its inverseφ−1 are efficiently
computable. Intype 2 pairings, only the isomorphismφ, but notφ−1, is efficiently
computable. Intype3 pairings, neitherφ nor φ−1 can be efficiently computed. The
efficiency of the pairing computation improves from type1 to type2 to type3 pairings.
For a detailed discussion of the performance aspects of pairings refer to [20, 22].

Non-interactive Proofs of Knowledge. As we assume the random oracle model in
the paper, we can use non-interactive zero-knowledge proofs of knowledge (NIZKPK)
based on the Fiat-Shamir methodology [23]. In particular, we use a variant of NIZKPK
of a discrete logarithm (DLog) and one for proof of equality of twoDLogs.

We employ a variant of NIZKPK of aDLog where given aDLog commitment
(C〈g〉(s) = gs) and a Pedersen commitment [24] (C〈g,h〉(s, r) = gshr) to the same
values for generatorsg, h ∈ G ands, r ∈ Zp, a prover proves that she knowss andr
such thatC〈g〉(s) andC〈g,h〉(s, r). We denote this proof as

NIZKPK≡Com(s, r, C〈g〉(s), C〈g,h〉(s, r)) = π≡Com ∈ Z
3
p. (1)

It is nearly equivalent to proving knowledge of twoDLogs separately.
We use another NIZKPK (proof of equality) of discrete logs [25] such that given

commitmentsC〈g〉(s) = gs andC〈h〉(s) = hs, a prover proves equality of the associated
DLogs. We denote this proof as

NIZKPK≡DLog(s, C〈g〉(s), C〈h〉(s)) = π≡DLog ∈ Z
2
p. (2)

Note thatg and h can belong two different groups of the same order. Refer to the
extended version of the paper [1] for the descriptions of theabove proofs.

There exists an easier way to prove this equality ofDLogs if a pairing between the
groups generated byg andh is available. Using a method due to Joux and Nguyen [26]
to solve the decisional Diffie-Hellman (DDH) problem over pairing-friendly groups,



givengx andhx
′

the verifier checks ife(g, hx
′

)
?
= e(gx, h). However, when using a type

3 pairing, in the absence of an efficient isomorphism betweenG andĜ, if both g andh
belong to the same group then the pairing-based scheme does not work. NIZKPK≡DLog

provides a completely practical alternative there.

2.2 Assumptions

System Assumptions. Except for the steps involving DKG in some form, all other steps
in our distributed PKG protocols are independent of the communication model used. As
distributedness of PKG is important in IBC outside closed organizational settings, we
suggest the asynchronous communication model as it closelymodels the Internet. In
particular, we follow the system model of the DKG protocol in[27]. In a synchronous
communication network, it is straightforward to replace this asynchronous DKG with a
more efficient protocol such as the Joint Feldman DKG (JF-DKG) [28].

We assume a standardt-Byzantine adversary in a system withn ≥ 3t + 1 nodes
P1, P2, . . . , Pn, where anyt nodes are compromised or crashed by the adversary. In the
synchronous communication model, the above resiliency bound becomesn ≥ 2t + 1.
Further, when the communication model is synchronous, we assume arushingadver-
sary. It can wait for the messages of the uncorrupted playersto be transmitted, then
decide on its computation and communication for that round,and still get its messages
delivered to the honest parties on time. The adversary is also staticas all of the efficient
VSS and DKG schemes that we use are proved secure only againsta static adversary,
which can choose itst compromisable nodes before a protocol run. They are not con-
sidered secure against an adaptive adversary because theirsecurity proofs do not go
through when the adversary can corrupt nodes adaptively. [28, §4.4] Canetti et al. [29]
presented a DKG scheme provably secure against adaptive adversaries with at least
two more communication rounds as compared to JF-DKG. Due to the inefficiency of
adaptive (provably) secure DKG protocols, we stick to protocols provably secure only
against a static adversary. However, it possible to easily use the DKG protocol in [29]
and obtain security against the adaptive adversary.

Cryptographic Assumptions. Our adversary is computationally bounded with a secu-
rity parameterκ. We assume an instance of a pairing frameworke of groupsG, Ĝ and
GT , whose common prime orderp is such that the adversary has to perform2κ opera-
tions to break the system. LetG = 〈e,G, Ĝ,GT 〉. Following [9], we work in the random
oracle model for efficiency reasons. For the security of the IBE schemes, we use thebi-
linear Diffie-Hellman(BDH) [30] andbilinear Diffie-Hellman inversion(BDHI) [31,
32] assumptions. Here, we recall their definitions for asymmetric pairings from [9].
BDH Assumption: Given a tuple(g, ĝ, ga, ĝa, gb, ĝc) in a bilinear groupG, the BDH
problem is to computee(g, ĝ)abc. The BDH assumption then states that it is infeasible
to solve a random instance of the BDH problem, with non-negligible probability, in
time polynomial in the size of the problem instance description.
BDHI Assumption: Given two tuples(g, gx, gx

2

, . . . , gx
q

) and (ĝ, ĝx, ĝx
2

, . . . , ĝx
q

)
in a bilinear groupG, the q-BDHI problem is to computee(g, ĝ)1/x. The BDHI as-
sumption for some polynomially boundedq states that it is infeasible to solve a random



instance of theq-BDHI problem, with non-negligible probability, in time polynomial in
the size of the problem instance description.

2.3 Distributed Computation

We next describe the distributed computation primitives that are required to design our
distributed PKGs in an network ofn nodes with at-limited Byzantine adversary. Note
that these distributed computation primitives are the efficient versions of the their orig-
inal forms in [33–35, 28, 36, 27] that utilize the presence ofrandom oracles and the
pairing-basedDDH problem solving technique [26].

DKG over Zp. Pedersen [24] introduced the concept of DKG and developed a DKG
protocol. Unlike VSS, where a dealer chooses a secret and distributes its shares among
the nodes, DKG requiresno trusted dealer. In an(n, t)-DKG protocol overZp, a set of
n nodes generates an elements ∈ Zp in a distributed fashion with its sharessi ∈ Zp

spread over then nodes such that any subset of size greater than a thresholdt can
reveal or use the shared secret, while smaller subsets cannot. We mandate the following
correctness and secrecy properties for a DKG protocol.

Correctness (DKG-C). There exists an efficient algorithm that on input shares from
2t + 1 nodes and the public information, outputs the same unique value s, even if
up tot shares are submitted by malicious nodes.

Secrecy (DKG-S).The adversary witht shares and the public parameters cannot com-
pute the secrets.

In the synchronous and asynchronous communication models,respectively JF-DKG in
[28] and the DKG protocol in [27] achieve these properties and are suitable for our use.
For ease of exposition, we avoid crash-recoveries used in the DKG protocol in [27].

The shared secret in the above DKG protocols may not beuniformly random; this
is a direct effect of using onlyDLog commitments having only computational secrecy.
(See [28,§3] for a possible adversary attack.) In many cases, we do not need a uni-
formly random secret key; the security of these schemes relies on the assumption that
the adversary cannot compute the secret. Most of our schemessimilarly only require the
assumption that it is infeasible to compute the secret givenpublic parameters and we
stick with DLog commitments those cases. However, we do indeed need a uniformly
random shared secret in few protocols. We mandate the following stronger correctness
and secrecy properties based on the DKG correctness and secrecy defined in [28,§4.1].

Strong Correctness (DKG-sC).Along with the DKG-C property,s is now uniformly
distributed inZn.

Strong Secrecy (DKG-sS).No information abouts can be learnt by the adversary ex-
cept for what is implied by the public parameters.

In this case, we use Pedersen commitments, but we do not employ the methodology
defined by Gennaro et al. [6], which increases the number of rounds in the protocol.
We observe that with the random oracle assumption at our disposal, the communica-
tionally demanding technique by Gennaro et al. can be replaced with the much simpler
computational non-interactive zero-knowledge proof of equality of committed values



NIZKPK≡Com described in Eq. 1. The simulator-based proof for the above is similar
to that in [28,§4.3] and is included in [1]. We represent DKG protocols usingtheDLog
and Pedersen commitments asDKGDLog andDKGPed respectively. For nodePi,

(

C
(s)
〈g〉, si

)

= DKGDLog(n, t, t̃, g, αi) (3)
(

C
(s,s′)
〈g,h〉 , [C

(s)
〈g〉,NIZKPK≡Com], si, s

′
i

)

= DKGPed(n, t, t̃, g, h, αi, α
′
i) (4)

Here, t̃ is the number of VSS instances to be chosen (t < t̃ ≤ 2t + 1), g, h ∈ G

are commitment generators andαi, α′
i ∈ Zp are respectively a secret and random-

ness shared byPi. For ψ,ψ′ ∈ Zp[x] of degreet with ψ(0) = s andψ′(0) = s′,

C
(s)
〈g〉 = [gs, gψ(1), · · · , gψ(n)] andC(s,s′)

〈g,h〉 = [gshs
′

, gψ(1)hψ
′(1), · · · , gψ(n)hψ

′(n)] are
respectivelyDLog and Pedersen commitment vectors. The optional NIZKPK≡Com is

a vector of proofs that the entries ofC
(s)
〈g〉 andC(s,s′)

〈g,h〉 commit to the same values.
In the most basic form ofDKG, nodes generate shares of a secretz chosen jointly

at random fromZp. Here, every node generates a randomri ∈ Zp and shares that
using theDKG protocol withDLog or Pedersen commitments asDKG(n, t, t̃ = t +
1, g, [h], ri, [r

′
i]) where the generatorh and randomnessr′i are only required if Pedersen

commitments are used. We represent the corresponding protocols as follows:
(

C
(z)
〈g〉, zi

)

= RandomDLog(n, t, g) (5)
(

C
(z,z′)
〈g,h〉 , [C

(z)
〈g〉,NIZKPK≡Com], zi, z

′
i

)

= RandomPed(n, t, g, h). (6)

Distributed Addition over Zp. Let α, β ∈ Zp be two secrets shared amongn nodes
using theDKG protocol. Let polynomialsf(x), g(x) ∈ Zp[x] be the respectively asso-
ciated degree-t polynomials and letc ∈ Zp be a non-zero constant. Due to the linearity
of Shamir’s secret sharing [37], a nodePi with sharesαi andβi can locally generate
shares ofα+β andcα by computingαi+βi andcαi, wheref(x)+g(x) andcf(x) are
the respective polynomials.f(x) + g(x) is random if either one off(x) or g(x) is, and
cf(x) is random iff(x) is. Commitment entries for the resultant shares respectively are
(

C
(α+β)
〈g〉

)

i
=

(

C
(α)
〈g〉

)

i

(

C
(β)
〈g〉

)

i
and

(

C
(cα)
〈g〉

)

i
=

(

C
(α)
〈g〉

)c

i
.

Distributed Multiplication over Zp. Local distributed multiplication of two shared se-
cretsα andβ looks unlikely. We use a distributed multiplication protocol against a com-
putational adversary by Gennaro et al. [36,§4]. However, instead of their interactive
zero-knowledge proof, we utilize the pairing-basedDDH problem solving technique
to verify the correctness of the product value shared by a node non-interactively. For
sharesαi andβi with DLog commitmentsgαi and ĝβi , given a commitmentgαiβi of

the shared product, other nodes can verify its correctness by checking ife(gαi , ĝβi)
?
=

e(gαiβi , ĝ) provided the groups ofg andĝ are pairing-friendly. We observe that it is also
possible to perform this verification when one of the involved commitments is a Peder-
sen commitment. However, if both commitments are Pedersen commitments, then we
have to computeDLog commitments for one of the values and employ NIZKPK≡Com

to prove its correctness in addition to using the pairing-based verification. In such a



case, the choice between the latter technique and the non-interactive version of zero-
knowledge proof suggested by Gennaro et al. [36] depends upon implementation effi-
ciencies of the group operation and pairing computations.

In our IBC schemes, we always use the multiplication protocol with at least one
DLog commitment. We denote the multiplication protocol involving two DLog com-
mitments asMulDLog and the one involving a combination of the two types of commit-
ments asMulPed. For the protocol correctness, along with recoverability to a unique
value (says), protocolMul also requires thats = αβ. For the protocol secrecy, along
with the secrecy ofαβ, the protocol should not provide any additional information
about the individual values ofα or β onceαβ is reconstructed.

(

C
(αβ)
〈g∗〉 , (αβ)i

)

= MulDLog(n, t, g
∗,

(

C
(α)
〈g〉 , αi

)

,
(

C
(β)
〈ĝ〉 , βi

)

) (7)
(

C
(αβ,αβ′)

〈ĝ,ĥ〉
, (αβ)i, (αβ

′)i

)

= MulPed(n, t, ĝ, ĥ,
(

C
(α)
〈g〉 , αi

)

,
(

C
(β,β′)

〈ĝ,ĥ〉
, βi, β

′
i

)

) (8)

For MulDLog, g∗ = g or ĝ. For MulPed, without loss of generality, we assume thatβ
is distributed with the Pedersen commitment. If insteadα uses Pedersen commitment,
then the Pedersen commitment groups for(αβ) change tog andh instead of̂g andĥ.

Briefly, the protocol works as follows. Every honest node runs theDKG(n, t, 2t +

1, ĝ, [ĥ], αiβi, [αiβ
′
i]) from Eq. 3 or 4. As discussed above, pairing-based DDH solving

is used to verify that the shared value is equal to the productof αi andβi.1 At the end,
instead of adding the subshares of the selected VSS instances, every node interpolates
them at index0 to get the new share(αβ)i of αβ.

The aboveMul protocols can be seamlessly extended for distributed computation of
any expression having binary products (BPs). Forℓ shared secretsx1, · · · , xℓ, and their
DLog commitmentsC(x1)

〈g〉 , · · · , C
(xℓ)
〈g〉 , shares of any binary productx′ =

∑m
i=1 kixai

xbi

with known constantski and indicesai, bi can be easily computed by extending the pro-
tocol in Eq. 7. We denote this generalization as follows.

(

C
(x′)
〈g∗〉, x

′
i

)

= MulBP(n, t, g∗, {(ki, ai, bi)},
(

C
(x1)
〈g〉 , (x1)i

)

, · · · ,
(

C
(xℓ)
〈g〉 , (xℓ)i

)

) (9)

NodePj shares
∑

i ki(xai
)j(xai

)j . For a type 1 pairing, the correctness of the sharing

is verified by other nodes ase(g
P

i ki(xai
)j(xbi

)j , g)
?
=

∏

i e((g
(xai

)j )ki , g(xbi
)j ). For

type 2 and 3 pairings, NIZKPK≡DLog is used to provideDLog commitments to the
(xbi

)j with generator̂g, and then a pairing computation like the above is used. We use
MulBP in Eq. 9 during distributed private-key extraction in the BB1-IBE scheme in§3.5.

Sharing the Inverse of a Shared Secret. Given an(n, t)-distributed secretα, computing
shares of its inverseα−1 in distributed manner (without reconstructingα) can be done
trivially but inefficiently using a distributed computation ofαp−1; this involvesO(log p)
distributed multiplications. However, using a technique by Bar-Ilan and Beaver [33],
this can be done using just oneRandom and oneMul protocol. This protocol involves
interpolation of the product of the secretα with a distributed random elementz. If z

1 For type3 pairings, a careful selection of commitment generators is required to make the
pairing-based verification possible.



is created usingDLog commitments and is not uniformly random, the productαz may
leak some information aboutα. We avoid this by using Pedersen commitments while
generatingz. For a generatorg∗, we represent this protocol as follows:

(

C
(α−1)
〈g∗〉 , (α−1)i

)

= Inverse(n, t, ĝ, ĥ,
(

C
(α)
〈g〉 , αi

)

) (10)

The protocol secrecy is the same as that of DKG except it is defined in the terms of
α−1 instead ofα; for the correctness property, along with recoverability to a unique
value s, this protocol additionally mandates thats = α−1. For a distributed secret
(

C
(α)
〈g〉 , αi

)

, protocolInverse works as follows: Every nodePi runs
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

=

RandomPed(n, t, ĝ, ĥ) and computes shares of(w,w′) = (αz, αz′) as
(

C
(w,w′)

〈ĝ,ĥ〉
, wi, w

′
i

)

= MulPed(n, t, ĝ, ĥ,
(

C
(α)
〈g〉 , αi

)

,
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

). It then sends(wi, w′
i) to each node

and interpolatesw using the correct received shares. Ifw = 0, repeats the above two
steps, else locally computes(α−1)i = w−1zi. Finally, it computes the commitment

C
(α−1)
〈g∗〉 usingw−1, C(z,z′)

〈ĝ,ĥ〉
, and if required, any of the NIZKPK techniques. A modified

form of this protocol is used in the distributed PKG for SK-IBE in §3.4.

3 Distributed PKG for IBE

We present distributed PKG setup and private key extractionprotocols for three IBE
schemes: BF-IBE [3], SK-IBE [11], and modified BB1-IBE [9]. Each of these schemes
represents a distinct important category of an IBE classification defined by Boyen [38].
They respectively belong tofull-domain-hashIBE schemes,exponent-inversionIBE
schemes, andcommutative-blindingIBE schemes. The distributed PKG architectures
that we develop for each of the three schemes apply to every scheme in their respective
categories. Our above choice of IBE schemes is influenced by arecent identity-based
cryptography standard (IBCS) [19] and also a comparative study by Boyen [9], which
finds the above three schemes to be the most practical IBE schemes in their respective
categories. In his classification, Boyen [38] also includesanother category for quadratic-
residuosity-based IBE schemes; however, none of the known schemes in this category
are practical enough to consider here.

The role of a PKG in an IBE scheme ends with a client’s private-key extraction and
the distributed form of the PKG does not affect the encryption and decryption steps of
IBE. Consequently, we define only the distributed PKG setup and private-key extraction
steps of the three IBE schemes under consideration. We recall the original encryption
and decryption steps in the extended version of the paper [1].

3.1 Bootstrapping Procedure

Each scheme under consideration here requires the following three bootstrapping steps.

1. Determine the node group sizen and the security thresholdt such thatn ≥ 3t+ 1
(the asynchronous case) orn ≥ 2t+ 1 (the synchronous case).



2. Choose the pairing type to be used and compute groupsG, Ĝ, andGT of prime
orderp such that there exists a pairinge of the decided type withe : G× Ĝ → GT .
The security parameterκ determines the group orderp.

3. Choose two generatorsg ∈ G andĝ ∈ Ĝ required to generate public parameters as
well as the commitments. With a type1 or 2 pairing, setg = φ(ĝ).

Any untrusted entity can perform these offline tasks. HonestDKG nodes can verify the
correctness of the tuple(n, t) and confirm the group choicesG, Ĝ, andGT as the first
step of their distributed PKG setup. If unsatisfied, they maydecline to proceed.

3.2 Formal Security Model

An IBE scheme with an(n, t)-distributed PKG consists of the following components:

– A distributed PKG setup protocolfor nodePi that takes the above bootstrapped
parametersn, t andG as input and outputs a sharesi of a master secrets and a
public-key vectorKpub of a master public key andn public-key shares.

– A distributed private key-extraction protocolfor nodePi that takes a client identity
ID, the public key vectorKpub and the master-secret sharesi as input and outputs
a verifiable private-key sharedIDi. The client computes the private keydID after
verifying the received sharesdIDi.

– An encryption algorithmthat takes a receiver identityID, the master public key
and a plaintext messageM as input and outputs a ciphertextC.

– A decryption algorithmfor client with identityID that takes a ciphertextC and the
private keydID as input and outputs a plaintextM .

Note that the above distributed PKG setup protocol does not require anydealerand
that we mandate verifiability for the private-key shares rather than obtaining robustness
using error-correcting techniques. During private-key extractions, we insist on minimal
interaction between clients and PKG nodes—transferring identity credentials from the
client at the start and private-key shares from the nodes at the end.

To define security against an IND-ID-CCA attack, we considerthe following game
that a challenger plays against a polynomially bounded t-limited Byzantine adversary.
Setup: The adversary chooses to corrupt a fixed set oft nodes and the challenger sim-
ulates the remainingn− t nodes to run a distributed PKG setup protocol. At the end of
the protocol execution, the adversary receivest shares of a shared master secret for itst
nodes and a public key vectorKpub. The challenger knows the remainingn− t shares
and can derive the master secret asn− t ≥ t+ 1 in any communication setting.
Phase 1:The adversary adaptively issues private-key extraction and decryption queries
to the challenger. For a private-key extraction query〈ID〉, the challenger simulates the
distributed key extraction protocol for itsn − t nodes and sends verifiable private-key
shares for itsn − t nodes. For a decryption query〈ID, C〉, the challenger decryptsC
by generating the private keydID or using the master secret.
Challenger: The adversary chooses two equal-length plaintextsM0 andM1, and a
challenge identityIDch such thatIDch does not appear in any private-key extraction
query in Phase1. The challenger choosesb ∈R {0, 1} and encryptsMb for IDch and
Kpub, and gives the ciphertextCch to the adversary.



Phase 2:The adversary adaptively issues more private-key extraction and decryption
queries to the challenger except for key extraction query for 〈IDch〉 and decryption
queries for〈IDch, Cch〉.
Guess:Finally, the adversary outputs a guessb′ ∈ {0, 1} and wins the game ifb = b′.

Security against IND-ID-CCA attacks means that, for any polynomially bounded
adversary,b′ = b with probability negligibly greater than1/2.

3.3 Boneh and Franklin’s BF-IBE

BF-IBE [3] belongs to the full-domain-hash IBE family. In a BF-IBE setup, a PKG
generates a master keys ∈ Zp and a public keygs ∈ G, and derives private keys for
clients using their identities ands. A client with identityID receives the private key
dID = (H1(ID))

s
= hsID ∈ Ĝ, whereH1 : {0, 1}∗ → Ĝ

∗ is a full-domain crypto-
graphic hash function. (̂G

∗ denotes the set of all elements inĜ except the identity.)

Distributed PKG Setup. This involves generation of the system master key and the sys-
tem public-key tuple in the(n, t)-distributed form amongn nodes. Each nodePi partic-
ipates in a common DKG overZp to generate its sharesi ∈ Zp of the distributed master

key s. The system public-key tuple is of the formC(s)
〈g〉 = [gs, gs1 , · · · , gsn ]. We obtain

this using ourRandomDLog protocol from Eq. 5 as
(

C
(s)
〈g〉, si

)

= RandomDLog(n, t, g).

Private-key Extraction. As a client needst+ 1 correct shares, it is sufficient for her to
contact any2t+ 1 nodes (say setQ). The private-key extraction works as follows.

1. Once a client with identityID contacts every node inQ, every honest nodePi ∈ Q
authenticates the client’s identity and returns a private-key sharehsi

ID ∈ Ĝ over a
secure and authenticated channel.

2. Upon receivingt + 1 valid shares, the client can construct her private keydID as
dID =

∏

Pi∈Q(hsi
ID)

λi ∈ Ĝ, where the Lagrange coefficientλi =
∏

Pj∈Q\{i}
j
j−i .

The client can verify the correctness of the computed private keydID by check-

ing e(g, dID)
?
= e(gs, hID). If unsuccessful, she can verify the correctness of each

receivedhsi
ID by checking ife(g, hsi

ID)
?
= e(gsi , hID). An equality proves the cor-

rectness of the share, while an inequality indicates misbehaviour by the nodePi
and its consequential removal fromQ.

In asymmetric pairings, elements ofG generally have a shorter representation than
those ofĜ. Therefore, we put the more frequently accessed system public-key shares
in G, while the occasionally transferred client private-key shares belong tôG. This also
leads to a reduction in the ciphertext size. However, for type 2 pairings, an efficient
hash-to-̂G is not available for the group̂G [20]; in that case we compute the system
public key shares in̂G and use the more feasible groupG for the private key shares.

Proof of Security. Using the encryption and decryption steps of theFullIdent version
of BF-IBE [3,§4.2] along with the above distributed setup and key extraction protocols,
we prove the IND-ID-CCA security of BF-IBE with the(n, t)-distributed PKG ((n, t)-
FullIdent) based on theBDH assumption. Hereafter,qE , qD andqHi

denote the number
of extraction, decryption and random oracleHi queries respectively.



Theorem 1. LetH1, H2, H3 andH4 be random oracles. LetA1 be an IND-ID-CCA
adversary that has advantageǫ1(κ) in running timet1(κ) against(n, t)-FullIdent mak-
ing at mostqE , qD, qH1

, qH2
, qH3

, andqH4
queries. Then, there exists an algorithmB

that solves theBDH problem inG with advantage roughly equal toǫ1(κ)/(qH1
qH2

(qH3
+

qH4
)) and running timeO(t1(κ), qE , qD, qH1

, qH2
, qH3

, qH4
).

For their proof, Boneh and Franklin define two additional public key encryption
schemes:BFBasicPub [3, Sec. 4.1], and its IND-CCA secure versionBFBasicPubhy

[3, Sec. 4.2] and prove the security ofFullIdent in the following proof sequence:
FullIdent → BFBasicPubhy → BFBasicPub → BDH. We use distributed versions
of these encryption schemes:(n, t)-BFBasicPubhy and (n, t)-BFBasicPub respec-
tively, and prove the proof sequence(n, t)-FullIdent → (n, t)-BFBasicPubhy →
(n, t)-BFBasicPub → BDH. For the complete proof, refer to the extended version
of the paper. [1]

3.4 Sakai and Kasahara’s SK-IBE

SK-IBE [11] belongs to the exponent-inversion IBE family. Here, the PKG generates
a master keys ∈ Zp and a public keygs ∈ G just as in BF-IBE. However, the key-
extraction differs significantly. Here, a client with identity ID receives the private key

dID = ĝ
1

s+H′

1(ID) ∈ Ĝ, whereH ′
1 : {0, 1}∗ → Zp.

Distributed PKG Setup. The distributed PKG setup remains the exactly same as that of
BF-IBE, wheresi ∈ Zp is the master-key share for nodePi andC(s)

〈g〉 = [gs, gs1 , · · · , gsn ]
is the system public-key tuple.

Private-key Extraction. The private-key extraction for SK-IBE is not as straightforward
as that for BF-IBE. We modify theInverse protocol described in§2.3; specifically,
here a private-key extracting client receiveswi from the node in step3 and instead
of nodes, theclient performs the interpolation. In step4, instead of publishing, nodes
forward ĝzi and the associated NIZKPK≡Com directly to the client, which computes
ĝz and thendID = (ĝz)w

−1

. The reason behind this is to avoid possible key escrow
if the node computes botĥgz andw. Further, the nodes precompute another generator

ĥ ∈ Ĝ for Pedersen commitments using
(

C
(r)
〈ĝ〉, ri

)

= RandomDLog(n, t, ĝ), and set

ĥ =
(

C
(r)
〈ĝ〉

)

0
= ĝr.

1. Once a client with identityID contacts alln nodes the system, every nodePi au-

thenticates the client’s identity, runs
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

= RandomPed(n, t, ĝ, ĥ) and

computessIDi = si +H ′
1(ID) and for0 ≤ j ≤ n,

(

C
(sID)
〈g〉

)

j
=

(

C
(s)
〈g〉

)

j
gH

′

1(ID) =

gsj+H
′

1(ID). RandomPed makes sure thatz is uniformly random.

2. Pi performs
(

C
(w,w′)

〈ĝ,ĥ〉
, wi, w

′
i

)

= MulPed(n, t, ĝ, ĥ,
(

C
(sID)
〈g〉 , sIDi

)

,
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

),

wherew = sIDz = (s+H ′
1(ID))z andw′ = (s+H ′

1(ID))z′ and sends
(

C
(w,w′)

〈ĝ,ĥ〉
, wi

)

along with NIZKPK≡Com(wi, w
′
i,

(

C
(w)
〈ĝ〉

)

i
,
(

C
(w,w′)

〈ĝ,ĥ〉

)

i
) to the client, which upon



receivingt+ 1 verifiably correct shares(wi) reconstructsw using interpolation. If
w 6= 0, then it computesw−1 or else starts again from step1.

3. NodePi sends
(

C
(z)
〈ĝ〉

)

i
= ĝzi andC(z,z′)

〈ĝ,ĥ〉
along with NIZKPK≡Com(zi, z

′
i,

(

C
(z)
〈ĝ〉

)

i
,

(

C
(z,z′)

〈ĝ,ĥ〉

)

i
) to the client.

4. The client verifies
(

C
(z)
〈ĝ〉

)

i
using the received NIZKPK≡Com, interpolatest + 1

valid ĝzi to computêgz and derives her private key(ĝz)w
−1

= ĝ
1

(s+H(ID)) .

This protocol can be used without any modification with any type of pairing. Further,
online execution of theRandomPed computation can be eliminated using batch pre-

computation of distributed random elements
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

.

Proof of Security. The security of SK-IBE with a distributed PKG ((n, t)-SK-IBE) is
based on theBDHI assumption.

Theorem 2. LetH ′
1, H2, H3 andH4 be random oracles. LetA1 be an IND-ID-CCA

adversary that has advantageǫ1(κ) in running timet1(κ) against(n, t)-SK-IBE making
at mostqE , qD, qH′

1
, qH2

, qH3
, andqH4

queries. Then, there exists an algorithmB that
solves theBDHI problem inG with advantage roughly equal toǫ1(κ)/(qH′

1
qH2

(qH3
+

qH4
)) and running timeO(t1(κ), qE , qD, qH′

1
, qH2

, qH3
, qH4

).

Chen and Cheng [39] prove the security of the original SK-IBEprotocol in a proof se-
quence: SK-IBE→ SKBasicPubhy → SKBasicPub → BDHI, whereSKBasicPub
andSKBasicPubhy [39, §3.2] are public key encryption schemes based on SK-IBE.
We prove Theorem 2 by showing(n, t)-SK-IBE → SKBasicPubhy. For the complete
proof, refer to the extended version of the paper [1].

3.5 Boneh and Boyen’s BB1-IBE

BB1-IBE belongs to the commutative-blinding IBE family. Bonehand Boyen [32] pro-
posed the original scheme with a security reduction to the decisional BDH assump-
tion [40] in the standard model against selective-identityattacks. However, with a prac-
tical requirement of IND-ID-CCA security, in the recent IBCS standard [19], Boyen
and Martin proposed a modified version, which is IND-ID-CCA secure in the random
oracle model under theBDH assumption. In [9], Boyen rightly claims that for practical
applications, it would be preferable to rely on the random-oracle assumption rather than
using a less efficient IBE scheme with a stronger security assumption or a weaker attack
model. We use the modified BB1-IBE scheme as described in [9] and [19].

In the BB1-IBE setup, the PKG generates a master-key triplet(α, β, γ) ∈ Z
3
p and an

associated public key tuple(gα, gγ , e(g, ĝ)αβ). A client with identityID receives the
private key tupledID = (ĝαβ+(αH′

1(ID)+γ)r, ĝr) ∈ Ĝ
2.

Distributed PKG Setup. In [9], Boyen does not include the parametersĝ and ĝβ

from the original BB1 scheme [32] in his public key, as they are not required during
key extraction, encryption or decryption (they are not omitted for security reasons).
In the distributed setting, we in fact need those parametersto be public for efficiency



reasons; a verifiable distributed computation ofe(g, ĝ)αβ becomes inefficient other-
wise. To avoid key escrow of clients’ private-key components (ĝr), we also need̂h
andC(β)

〈ĥ〉
; otherwise, parts of clients’ private keys would appear in public commitment

vectors. As in SK-IBE in§3.4, this extra generator̂h ∈ Ĝ is precomputed using the
RandomDLog protocol. Distributed PKG setup of BB1 involves distributed generation
of the master-key tuple(α, β, γ). Distributed PKG nodePi achieves this using the fol-

lowing threeRandomDLog protocol invocations:
(

C
(α)
〈g〉 , αi

)

= RandomDLog(n, t, g),
(

C
(β)
〈ĝ〉 , βi

)

= RandomDLog(n, t, ĝ), and
(

C
(γ)
〈g〉 , γi

)

= RandomDLog(n, t, g).

Here,(αi, βi, γi) is the tuple of master-key shares for nodePi. We also needC(β)

〈ĥ〉
;

each nodePi provides this by publishing
(

C
(β)

〈ĥ〉

)

i
= ĥβi and the NIZKPK≡DLog

(βi, ĝ
βi , ĥβi). The tuple

(

C
(α)
〈g〉 , e(g, ĝ)

αβ , C
(γ)
〈g〉 , C

(β)

〈ĥ〉

)

forms the system public key, where

e(g, ĝ)αβ can computed from the public commitment entries. The vectorC
(β)
〈ĝ〉 , although

available publicly, is not required for any further computation.

Private-key Extraction. The most obvious way to compute a BB1 private key seems
to be forPi to computeαiβi + (αiH

′
1(ID) + γi)ri and provide the corresponding

ĝαiβi+(αiH
′

1(ID)+γi)ri , ĝri to the client, who now needs2t+1 valid shares to obtain her
private key. However,αiβi+(αiH

′
1(ID)+γi)ri here is not a share of a random degree-

2t polynomial. The possible availability of̂gri to the adversary creates a suspicion about
secrecy of the master-key share with this method. For private-key extraction in BB1-
IBE with a distributed PKG, we instead use theMulBP protocol in which the client is
provided withĝwi , wherewi = (αβ + (αH ′

1(ID) + γ)r)i is a share of random degree
t polynomial. The protocol works as follows.

1. Once a client with identityID contacts alln nodes the system, every nodePi au-

thenticates the client’s identity and runs
(

C
(r,r′)

〈ĥ,ĝ〉
, [C

(r)

〈ĥ〉
,NIZKPK≡Com], ri, ri

)

=

RandomPed(n, t, f, ĥ, ĝ). RandomPed makes sure thatr is uniformly random.
2. Pi computes its sharewi of w = αβ + (αH ′

1(ID) + γ)r usingMulBP in Eq. 9.
“

C
(w)

〈g∗〉, wi

”

= MulBP(n, t, f, g
∗
, desc,

“

C
(α)

〈g〉 , αi

”

,
“

C
(β)

〈ĥ〉
, βi

”

,
“

C
(γ)

〈g〉 , γi

”

,
“

C
(r)

〈ĥ〉
, ri

”

).

Here,desc = {(1, 1, 2), (H ′
1(ID), 1, 4), (1, 3, 4)} is the description of the required

binary product under the ordering(α, β, γ, r) of secrets. To justify our choices
of commitment generators, we present the pairing-based verification in protocol

MulBP: e(gαiβi+(αiH
′

1(ID)+γi)ri , ĥ)
?
= e(gαi , ĥβi)e((gαi)H

′

1(ID)gγi , ĥri). For type
2 and3 pairings,g∗ = g, as there is no efficient isomorphism fromG to Ĝ. For
type1 pairings, we useg∗ = ĥ = φ−1(h). Otherwise, the resultant commitments
for w (which are public) will contain the private-key partgαβ+(αH′

1(ID)+γ)r.
3. Once theMulBP protocol has succeeded, NodePi generateŝgwi andĝri and sends

those to the client over a secure and authenticated channel.
4. The client generates her private key(ĝαβ+(αH′

1(ID)+γ)r, ĝr) by interpolating the
valid received shares. For type1 and type2 pairings, the client can use the pairing-
based DDH solving to check the validity of the shares. However, for type3 pairings,



without an efficient mapping from̂G to G, pairing-based DDH solving can only be
employed to verifŷgwi . As a verification of̂gri , nodePi includes a NIZKPK≡DLog
(ri, ĥ

ri , ĝri) along withĝwi andĝri .

As in SK-IBE in §3.4, online execution of theRandomDLog computation can be elimi-

nated using batch precomputation of distributed random elements
(

C
(r)

〈ĥ〉
, ri

)

.

Proof of Security. Along with the above distributed setup and private-key extraction
protocols, we prove IND-ID-CCA security of BB1-IBE with the(n, t)-distributed PKG
((n, t)-BB1-IBE) based on theBDH assumption. To the best of our knowledge, an IND-
ID-CCA security proof for the modified BB1-IBE scheme has not been published yet.

Theorem 3. LetH ′
1, H2, H3 andH ′

4 be random oracles. LetA be an IND-ID-CCA
adversary that has advantageǫ(κ) in running timet(κ) against(n, t)-BB1-IBE making
at mostqE , qD, qH′

1
, qH2

, qH′

3
, and qH4

queries. Then, there exists an algorithmB
that solves theBDH problem inG with advantage roughly equal toǫ(κ)/(qH′

1
qH′

3
) and

running timeO(t(κ), qE , qD, qH′

1
, qH2

, qH′

3
, qH4

).

For the proof, refer to the extended version of the paper [1].
Using a more expensive DKG protocol with uniformly random output, all of our

proofs would become relatively simpler. However, note thatour use of DKG without
uniformly random output does not affect the security reduction factor in any proof.
This is something not achieved for the known previous protocols with non-uniform
DKG such as threshold Schorr signatures [28]. Further, we donot discuss the liveness
and agreement properties for our asynchronous protocols asliveness and agreement of
all the distributed primitives provides liveness and agreement for the distributed PKG
setup and distributed key extraction protocols. Finally, for simplicity of the discussion,
it would have been better to combine three proofs. However, that looks difficult, if not
impossible, as the distributed computation tools used in these distributed PKGs and the
original IBE security proofs vary a lot from a scheme to scheme.

Finally, observing the importance of proactiveness and a capability to handle group
dynamics in any practical system, we also discuss the proactive security and group mod-
ification primitives for our distributed PKGs in the extended version of the paper [1].

4 Comparing Distributed PKGs

In this section, we discuss the performance of the setup and key extraction protocols
of the above three distributed PKGs. For a detailed comparison of the encryption and
decryption steps of BF-IBE, SK-IBE and BB1-IBE, refer to [9]. The general recommen-
dations from this survey are to avoid SK-IBE and other exponent-inversion IBEs due to
their reliance on the strongBDHI assumption, and that BB1-IBE and BF-IBE both are
good, but BB1-IBE can be a better choice due to BF-IBE’s less efficient encryption.

Table 1 provides a detailed operation count and key size comparison of three dis-
tributed PKGs. We countDKG instances, pairings, NIZKPKs, interpolations and public
and private key sizes. We leave aside the comparatively small exponentiations and other
group operations. As mentioned in§3.5, for BB1-IBE, with pairings of type 1 and 2,



Table 1. Operation count and key sizes for distributed PKG setups and distributed private-key
extractions (per key)

BF-IBE SK-IBE BB1-IBE
Setup ExtractionSetup Extraction Setup Extraction

Operation Count
Generatorh or ĥ X X X

DKGa (precomputed) - 0 - 1P - 1P

DKG (online) 1D 0 1D 1P 3D 1D

Parings @PKG Node 0 0 0 2n 1b 2n

Parings @Client - 2(2t + 2) - 0 - 2nb

NIZKPK 0 0 0 2n nb 2nb

Interpolations 0 1 0 2 1 2
Key Sizes

PKG Public Key (n + 2)Gc (n + 3)G (2n + 3)G, (n + 2)Ĝ, (1)GT

Private-key Shares (2t + 1)Ĝc (3n)Zp, (3n + 1)Ĝ (2n)Zp
b, (2n)Ĝ

a For DKG, D indicates use ofDLog commitments, while P indicates Pedersen commitments.
b For type1 and2 pairings,2n extra pairings replacen NIZKPKs. Further, the2n Zp elements

are omitted from the private-key shares.
c For type 2 parings, the groups used for the PKG public key and the private-key shares are

interchanged.

there is a choice that can be made between usingn NIZKPKs and2n pairing com-
putations. The table shows the NIZKPK choice (the only option for type 3 pairings),
and footnoteb shows where NIZKPKs can be traded off for pairings. An efficient al-
gorithm for hash-to-̂G is not available for type2 pairing curves and we interchange the
groups used for the public key and client private-key shares. Footnotec indicates how
that affects the key sizes.

In Table 1, we observe that the distributed PKG setup and the distributed private-
key extraction protocols for BF-IBE are significantly more efficient than those for
SK-IBE and BB1-IBE. Importantly, for BF-IBE, distributed PKG nodes can extract
a key for a client without interacting with each other, whichis not possible in the other
two schemes; both BB1-IBE and SK-IBE require at least oneDKG instance for every
private-key extraction; the second required instance can be batch precomputed. There-
fore, for IBE applications in the random oracle model, we suggest the use of the BF-IBE
scheme, except in situations where private-key extractions are rare and efficiency of the
encryption step is critical to the system. For such applications, we suggest BB1-IBE as
the small efficiency gains in the distributed PKG setup and extraction protocols of SK-
IBE do not well compensate for the strong security assumption required. BB1-IBE is
also more suitable for type2 pairings, where an efficient map-to-group hash functionH1

is not available. Further, BB1-IBE can also be proved secure in the standard model with
selective-identity attacks. For applications demanding security in the standard model,
our distributed PKG for BB1-IBE also provides a solution to the key escrow and single
point of failure problems, using pairings of type1 or 2.



5 Concluding Remarks

We have designed and compared distributed PKG setup and private key extraction pro-
tocols for BF-IBE, SK-IBE, and BB1-IBE. We observed that the distributed PKG pro-
tocol for BF-IBE is the most efficient among all and we suggestits use when the system
can support its relatively costly encryption step. For systems requiring a faster encryp-
tion, we suggest the use of BB1-IBE instead. However, during every distributed private
key extraction, it requires a DKG and consequently, interaction among PKG nodes.
That being said, during private-key extractions, we successfully avoid any interaction
between clients and PKG nodes except the necessary identityat the start and key share
transfers at the end. Finally, each of the above schemes represents a separate IBE frame-
work and our designs can be applied to other schemes in those frameworks as well.

Acknowledgements. This work is supported by NSERC, MITACS, and a David R.
Cheriton Graduate Scholarship. We specially thank Sanjit Chatterjee for his sugges-
tions regarding the pairing types and the IBE literature. Wealso thank Alfred Menezes,
Kenny Paterson and the anonymous reviewers for helpful discussions and suggestions.

References

1. Kate, A., Goldberg, I.: Asynchronous Distributed Private-Key Generators for Identity-Based
Cryptography. Cryptology ePrint Archive, Report 2009/355 athttp://eprint.iacr.
org/2009/355 (April 2010)

2. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes.In: CRYPTO’84. (1984)
47–53

3. Boneh, D., Franklin, M.K.: Identity-Based Encryption from the WeilPairing. In:
CRYPTO’01. (2001) 213–229

4. Joye, M., Neven, G.: Identity-Based Cryptography - Volume 2 Cryptology and Information
Security Series. IOS Press, Amsterdam, The Netherlands, The Netherlands (2008)

5. Feldman, P.: A Practical Scheme for Non-interactive Verifiable Secret Sharing. In: FOCS’87.
(1987) 427–437

6. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure Distributed Key Generation for
Discrete-Log Based Cryptosystems. In: EUROCRYPT’99. (1999) 295–310

7. Kate, A., Zaverucha, G.M., Goldberg, I.: Pairing-Based Onion Routing. In: PETS’07. (2007)
95–112

8. Abdalla, M., Catalano, D., Fiore, D.: Verifiable Random Functions from Identity-Based Key
Encapsulation. In: EUROCRYPT’09. (2009) 554–571

9. Boyen, X.: A Tapestry of Identity-based Encryption: Practical Frameworks Compared.
IJACT 1(1) (2008) 3–21

10. Geisler, M., Smart, N.P.: Distributing the Key Distribution Centre in Sakai-Kasahara Based
Systems. In: IMA Int. Conf. on Cryptography and Coding. (2009) 252–262

11. Sakai, R., Kasahara, M.: ID based Cryptosystems with Pairing on Elliptic Curve. Cryptology
ePrint Archive, Report 2003/054 (2003)

12. Al-Riyami, S.S., Paterson, K.G.: Certificateless Public Key Cryptography. In: ASI-
ACRYPT’03. (2003) 452–473

13. Lee, B., Boyd, C., Dawson, E., Kim, K., Yang, J., Yoo, S.: Secure key issuing in ID-based
cryptography. In: ACSW Frontiers’04. (2004) 69–74

14. Gangishetti, R., Gorantla, M.C., Das, M., Saxena, A.: Thresholdkey issuing in identity-based
cryptosystems. Computer Standards & Interfaces29(2) (2007) 260–264



15. Chunxiang, X., Junhui, Z., Zhiguang, Q.: A Note on Secure Key Issuing in ID-based Cryp-
tography. Technical report (2005)http://eprint.iacr.org/2005/180.

16. Goyal, V.: Reducing Trust in the PKG in Identity Based Cryptosystems. In: CRYPTO’07.
(2007) 430–447

17. Boldyreva, A.: Threshold Signatures, Multisignatures and Blind Signatures Based on the
Gap-Diffie-Hellman-Group Signature Scheme. In: PKC’03. (2003) 31–46

18. Wang, H., Zhang, Y., Feng, D.: Short Threshold Signature Schemes Without Random Ora-
cles. In: INDOCRYPT’03. (2005) 297–310

19. Boyen, X., Martin, L.: Identity-Based Cryptography Standard (IBCS) (Version 1), Request
for Comments (RFC) 5091.http://www.ietf.org/rfc/rfc5091.txt (2007)

20. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Applied
Mathematics156(16) (2008) 3113–3121

21. Blake, I., Seroussi, G., Smart, N.P., eds.: Advances in Elliptic Curve Cryptography. Number
317 in London Mathematical Society Lecture Note Series. (2005) 183–252.

22. Chatterjee, S., Menezes, A.: On Cryptographic Protocols Employing Asymmetric Pairings -
The Role ofΨ Revisited. CACR 2009-34 athttp://www.cacr.math.uwaterloo.
ca/techreports/2007/cacr2009-34.pdf (2009)

23. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signa-
ture Problems. In: CRYPTO’86. (1986) 186–194

24. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing.
In: CRYPTO’91. (1991) 129–140

25. Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: CRYPTO. (1992) 89–105
26. Joux, A., Nguyen, K.: Separating Decision Diffie-Hellman from Computational Diffie-

Hellman in Cryptographic Groups. Journal of Cryptology16(4) (2003) 239–247
27. Kate, A., Goldberg, I.: Distributed Key Generation for the Internet.In: ICDCS’09. (2009)

119–128
28. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure Distributed Key Generation for

Discrete-Log Based Cryptosystems. Journal of Cryptology20(1) (2007) 51–83
29. Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive Security for Thresh-

old Cryptosystems. In: CRYPTO’99. (1999) 98–115
30. Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: ANTS-IV. (2000) 385–

394
31. Mitsunari, S., Sakai, R., Kasahara, M.: A New Traitor Tracing. IEICE TransactionsE85-

A(2) (2002) 481–484
32. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption Without

Random Oracles. In: EUROCRYPT’04. (2004) 223–238
33. Bar-Ilan, J., Beaver, D.: Non-Cryptographic Fault-Tolerant Computing in Constant Number

of Rounds of Interaction. In: PODC’89. (1989) 201–209
34. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic

fault-tolerant distributed computation. In: STOC’88. (1988) 1–10
35. Cachin, C., Kursawe, K., A.Lysyanskaya, Strobl, R.: Asynchronous Verifiable Secret Sharing

and Proactive Cryptosystems. In: ACM CCS’02. (2002) 88–97
36. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and Fact-Track Multiparty Computa-

tions with Applications to Threshold Cryptography. In: PODC’98. (1998)101–111
37. Shamir, A.: How to Share a Secret. Commun. ACM22(11) (1979) 612–613
38. Boyen, X.: GeneralAd HocEncryption from Exponent Inversion IBE. In: EUROCRYPT’07.

(2007) 394–411
39. Chen, L., Cheng, Z.: Security Proof of Sakai-Kasahara’s Identity-Based Encryption Scheme.

In: IMA Int. Conf. (2005) 442–459
40. Joux, A.: The Weil and Tate Pairings as Building Blocks for Public KeyCryptosystems. In:

ANTS-V. (2002) 20–32


