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Abstract. An identity-based encryption (IBE) scheme can greatly reduce the
complexity of sending encrypted messages. However, an IBE schecessarily
requires a private-key generator (PKG), which can create prieate fior clients,

and so can passively eavesdrop on all encrypted communicationsugtita dis-
tributed PKG has been suggested as a way to mitigate this key escrow problem
for Boneh and Franklin’s IBE scheme, the security of this distributedopod

has not been proven. Further, a distributed PKG has not been catside any
other IBE scheme.

In this paper, we design distributed PKG setup and private key extraatimn p
tocols for three important IBE schemes; namely, Boneh and FranBif*BE,
Sakai and Kasahara's SK-IBE, and Boneh and Boyen's-B&E. We give special
attention to the applicability of our protocols to all possible types of bilinear pair-
ings and prove their IND-ID-CCA security in the random oracle modelresi

a Byzantine adversary. Finally, we also perform a comparative asalfthese
protocols and present recommendations for their use.

1 Introduction

In 1984, Shamir [2] introduced the notion of identity-basegptography (IBC) as an
approach to simplify public-key and certificate managenmeatpublic-key infrastruc-
ture (PKI) and presented an open problem to provide an igelngised encryption (IBE)
scheme. After seventeen years, Boneh and Franklin [3] gexpthe first practical and
secure IBE scheme (BF-IBE) using bilinear maps. After tkismimal work, in the last
few years, significant progress has been made in IBC (foilgetefer to a recent book
on IBC [4] and references therein).

In an IBC system, a client chooses an arbitrary string sudhea®-mail address
to be her public key. With a standardized public-key stringrfat, an IBC scheme
completely eliminates the need for public-key certificatds an example, in an IBE
scheme, a sender can encrypt a message for a receiver knjsintpe identity of
the receiver and importantly, without obtaining and varifythe receiver’'s public-key
certificate. Naturally, in such a system, a client herselfias capable of generating
a private key for her identity. There is a trusted party chbeprivate-key generator
(PKG) which performs the system setup, generates a sedied tlae master keyand

* An extended version of this paper is avaiable [1].



provides private keys to clients using it. As the PKG compuaterivate key for a client,
it can decrypt all of her messages passively. This inhdw@yescrovproperty asks for
complete trust in the PKG, which is difficult to find in many lisc scenarios.

Importantly, the amount of trust placed in the holder of af IBaster key is far
greater than that placed in the holder of the private key eftifging authority (CA) in a
PKI. Ina PKI, in order to attack a client, the CA has to acthgtnerate a fake certificate
for the client containing a fake public key. In this casesibften possible for the client
to detect and prove the malicious behaviour of the CA. The @Anot perform any
passive attack; specifically, it cannot decrypt a messageypted for the client using
a client-generated public key and it cannot sign some dontifioe the client, if the
verifier gets a correct certificate from the client. On thesothand, in IBC, 1) knowing
the master key, the PKG can decrypt or sign the messagesyaliant, without any
active attack and consequent detection, 2) the PKG can nliekéstprivate keys public
without any possible detection, and 3) in a validity-perimbed key revocation system
[3], bringing down the PKG is sufficient to bring the systematoomplete haltgingle
point of failurg, once the current validity period ends. Therefore, the RKIBC needs
to be far more trusted than the CA in a PKI. This has been cersidas a reason for
the slow adoption of IBC schemes outside of closed orgabpizaltsettings.

Boneh and Franklin [3] suggest distributing a PKG in theirIBIE scheme to solve
these problems. In afn, t)-distributed PKG the master key is distributed among
PKG nodes such that a set of nodes of sine smaller cannot compute the master key,
while a client extracts her private key by obtaining priveéy shares from any+ 1
or more nodes; she can then use the system’s public key fy teeicorrectness of her
thus-extracted key. Boneh and Franklin [3] propuesgfiable secret sharingySS) [5]
of the master key among multiple PKGs to design a distribiE& and also hint
towards a completely distributed approach using the istied (shared) key generation
(DKG) schemes of Gennaro et al. [6]; however, they do notipiea formal security
model and a proof. Further, none of the IBE schemes defined g consider the
design of a distributed PKG.

Although various proposed practical applications using,|Buch as pairing-based
onion routing [7] or verifiable random functions from ideptbased key encapsula-
tion [8], require a distributed PKG as a fundamental neesketlis no distributed PKG
available for use yet. This practical need forms the madtiveof this work.

Related Work. Although we are defining protocols for IBE schemes, as we aneen-
trating on distributed cryptographic protocols and duepgacg constraints, we do not
include a comprehensive account of IBE. We refer reader8]tinf a detailed discus-
sion on the various IBE schemes and frameworks defined intératlre. Pursuant to
this survey, we work in the random oracle model for efficieaoy practicality reasons.

None of the IBE schemes except BF-IBE considered distrtb®€G setup and
key extraction protocols in their design. Recently, Geialed Smart [10] defined a dis-
tributed PKG for Sakai and Kasahara’'s SK-IBE [11]; howetkeir solution against
a Byzantine adversary has an exponential communicatiorplexity and a formal
security proof is also not provided. We overcome both of ¢hiearriers in our dis-
tributed PKG for SK-IBE: our scheme is secure against a Byzamdversary and has



the same polynomial-time communication complexity asrteelleme, which is secure
only against an honest-but-curious adversary; we alsdgeevformal security proof.

Other than [10], there have been a few other efforts in tleeditire to counter the
inherent key escrow and single point of failure issues in.IBERiyami and Paterson
[12] introducecertificateless public-key cryptograpf@L-PKC) to address the key es-
crow problem by combining IBC with public-key cryptograpfiyeir elegant approach,
however, does not address the single point of failure probksithough it is possible
to solve the problem by distributing their PKG using a VSSi@ehemploys a trusted
dealer to generate and distribute the key shares), whialhisréntly cheaper than a
DKG-based PKG by a linear factor, it is impossible to stop aleiés active attacks
without completely distributed master-key generatiorrtiier, as private-key extrac-
tions are less frequent than encryptions, it is certainkjisadble to use more efficient
options during encryption rather than private-key extoactFinally, with the require-
ment of online access to the receiver's public key, CL-PKCobees ineffective for
systems without continuous network access, where IBC isidered to be an impor-
tant tool. Lee et al. [13] and Gangishetti et al. [14] propeasants of the distributed
PKG involving a more trustworthy key generation centre (K@@8d other key privacy
authorities (KPAs). As observed by Chunxiang et al. [15][f8], these approaches
are, in general, vulnerable to passive attack by the KGCdttitian, the trust guaran-
tees required by a KGC can be unattainable in practice. Gbghteduces the required
trust in the PKG by restricting its ability to distribute detit’s private key. This does
not solve the problem of single point of failure. Furthee #KG in his system still can
decrypt the clients’ messages passively, which leavesiaesand practical implemen-
tation of distributed PKGs wanting.

Threshold versions of sighature schemes obtained from $BEechemes using
the Naor transform have been proposed and proved previfisl$8]. However, these
solutions do not work for the corresponding IBE scheme. T$hidue to the inherent
secret nature of a client’s private keys and correspondiages as compared to the in-
herent public nature of signatures and corresponding gignahares. While designing
IBE schemes with a distributed PKG, we have to make sure tifd€@ node cannot
derive more information than the private-key share it gate=r for a client and that
private-key shares are not available in public as commitmen

Our Contributions. We present distributed PKGs for all three important IBE feam
works: namely, full-domain-hash IBEs, exponent-invemd®ESs and commutative-blin-
ding IBEs [9]. We propose distributed PKG setups and disteith private-key extraction
protocols for BF-IBE [3], SK-IBE [11], and Boneh and Boye(rsodified) BB, -IBE [9,
19] schemes. The novelty of our protocols lies in achievirggdecrecy of a client pri-
vate key from the generating PKG nodes without compromitfiegefficiency. We re-
alize this with an appropriate use of non-interactive psadfknowledge, pairing-based
verifications, and DKG protocols with and without the uniforandomness property.
Based on the choice of the DKG protocol, our distributed PK&s work in the syn-
chronous or asynchronous communication model. In termsasfibility, we ensure that
our protocols work for all three pairing types defined by Gailith et al. [20].

We prove the adaptive chosen ciphertext security (IND-IDAT of the defined
schemes in the random oracle model. Interestingly, condpiréhe security proofs



for the respective IBE schemes with a single PKG, there araddlitional security re-
duction factors in our proofs, even though the underlying@pgrotocol used in the
distributed PKGs does not provide a guarantee about theramifandomness for the
generated master secrets. To the best of our knowledge ihero threshold cryp-
tographic protocol available in the literature where a Emiight security reduction
has been proven while using a DKG without the (more expehsindorm random-
ness property. Finally, using operation counts, key siaerd possible pairing types, we
compare the performance of three distributed PKGs we define.

2 Preliminaries
2.1 Cryptographic Background

Bilinear Pairings. For three cyclic group&, G, andG (all of which we shall write
multiplicatively) of the same prime ordet anadmissible bilinear pairing: is a map
e : G x G — Gy with thebilinearity, non-degeneracgndadmissibilityproperties. For
a detailed mathematical discussion of bilinear pairindsrreo [21]. We consider all
three types of pairings [20] for prime order groups: nantgiye 1, 2, and3. In typel or
symmetrigoairings, an isomorphism : G — G as well as its inversg¢—! are efficiently
computable. Irtype 2 pairings, only the isomorphism, but not¢—!, is efficiently
computable. Intype 3 pairings, neithew nor ¢—! can be efficiently computed. The
efficiency of the pairing computation improves from typ# type2 to type3 pairings.
For a detailed discussion of the performance aspects ahgairefer to [20, 22].

Non-interactive Proofs of Knowledge. As we assume the random oracle model in
the paper, we can use non-interactive zero-knowledge padinowledge (NIZKPK)
based on the Fiat-Shamir methodology [23]. In particul& use a variant of NIZKPK
of a discrete logarithmdLog) and one for proof of equality of twbLogs.

We employ a variant of NIZKPK of &Log where given aDLog commitment
(Ci(s) = ¢°) and a Pedersen commitment [24} (5 (s,7) = g°h") to the same
values for generatorg, h € G ands, r € Z,, a prover proves that she knowsndr
such thaC (s) andC, ) (s, ). We denote this proof as

NIZKPK =com (5,7, Cigy (5), Cig.n) (5,7)) = T=com € Zj. (1)

It is nearly equivalent to proving knowledge of tdd.ogs separately.

We use another NIZKPK (proof of equality) of discrete log§][8uch that given
commitment&’,, (s) = g* andC ) (s) = h*, a prover proves equality of the associated
DLogs. We denote this proof as

NIZKPK = pLog(,Cg) (8),Ciny (8)) = T=DLog € Z2. 2)

Note thatg and h can belong two different groups of the same order. Refer ¢o th
extended version of the paper [1] for the descriptions ofteve proofs.

There exists an easier way to prove this equalitipbbgs if a pairing between the
groups generated hyandh is available. Using a method due to Joux and Nguyen [26]
to solve the decisional Diffie-HellmarDDH) problem over pairing-friendly groups,



giveng® andh®” the verifier checks i£(g, hx/) z e(g”®, h). However, when using a type
3 pairing, in the absence of an efficient isomorphism betw@emdG, if both g andh
belong to the same group then the pairing-based scheme dibgsk. NIZKPK=p o4
provides a completely practical alternative there.

2.2 Assumptions

System Assumptions. Except for the steps involving DKG in some form, all otheipste
in our distributed PKG protocols are independent of the comication model used. As
distributedness of PKG is important in IBC outside closeghoizational settings, we
suggest the asynchronous communication model as it closetlels the Internet. In
particular, we follow the system model of the DKG protoco[27]. In a synchronous
communication network, it is straightforward to replacis isynchronous DKG with a
more efficient protocol such as the Joint Feldman DKG (JF-DR8].

We assume a standateByzantine adversary in a system with> 3t + 1 nodes
P, Py, ..., P,, where any nodes are compromised or crashed by the adversary. In the
synchronous communication model, the above resiliencnddecomes > 2t + 1.
Further, when the communication model is synchronous, wamas arushingadver-
sary. It can wait for the messages of the uncorrupted plagebe transmitted, then
decide on its computation and communication for that roand, still get its messages
delivered to the honest parties on time. The adversaryassgdgicas all of the efficient
VSS and DKG schemes that we use are proved secure only agatetic adversary,
which can choose its compromisable nodes before a protocol run. They are not con-
sidered secure against an adaptive adversary becauseebarnity proofs do not go
through when the adversary can corrupt nodes adaptivély§f24] Canetti et al. [29]
presented a DKG scheme provably secure against adaptiersadies with at least
two more communication rounds as compared to JF-DKG. Dukdartefficiency of
adaptive (provably) secure DKG protocols, we stick to pcots provably secure only
against a static adversary. However, it possible to eas#ythhie DKG protocol in [29]
and obtain security against the adaptive adversary.

Cryptographic Assumptions. Our adversary is computationally bounded with a secu-
rity parameters. We assume an instance of a pairing framewodf groupsG, G and
G, whose common prime orderis such that the adversary has to perf@fropera-
tions to break the system. Lét= (e, G, G, Gr). Following [9], we work in the random
oracle model for efficiency reasons. For the security of Bie $chemes, we use the
linear Diffie-Hellman(BDH) [30] andbilinear Diffie-Hellman inversior(BDHI) [31,

32] assumptions. Here, we recall their definitions for aswtmio pairings from [9].

BDH Assumption: Given a tuple(g, g, g%, %, g%, ¢¢) in a bilinear groups, the BDH
problem is to compute(g, §)**¢. The BDH assumption then states that it is infeasible
to solve a random instance of the BDH problem, with non-gdgle probability, in
time polynomial in the size of the problem instance desitnipt

BDHI Assumption: Given two tuples(g, g%, ¢*",...,¢*") and (3, 4%, 5% ,...,5°")

in a bilinear groupg, the ¢-BDHI problem is to compute(g, §)*/*. The BDHI as-
sumption for some polynomially boundedtates that it is infeasible to solve a random



instance of the-BDHI problem, with non-negligible probability, in time pmomial in
the size of the problem instance description.

2.3 Distributed Computation

We next describe the distributed computation primitived tre required to design our
distributed PKGs in an network ef nodes with &-limited Byzantine adversary. Note
that these distributed computation primitives are theiefficversions of the their orig-
inal forms in [33-35, 28, 36, 27] that utilize the presencaafdom oracles and the
pairing-basedDH problem solving technique [26].

DKG over Z,. Pedersen [24] introduced the concept of DKG and develope&@ D
protocol. Unlike VSS, where a dealer chooses a secret atrtbdies its shares among
the nodes, DKG require® trusted dealerin an(n, t)-DKG protocol ovelZ,, a set of
n nodes generates an element Z, in a distributed fashion with its shares € 7,
spread over ther nodes such that any subset of size greater than a threstuald
reveal or use the shared secret, while smaller subsetsic&d@mandate the following
correctness and secrecy properties for a DKG protocol.

Correctness (DKG-C). There exists an efficient algorithm that on input shares from
2t + 1 nodes and the public information, outputs the same uniqleaeven if
up tot shares are submitted by malicious nodes.

Secrecy (DKG-S). The adversary with shares and the public parameters cannot com-
pute the secret.

In the synchronous and asynchronous communication maésisectively JF-DKG in
[28] and the DKG protocol in [27] achieve these propertied are suitable for our use.
For ease of exposition, we avoid crash-recoveries useaiDKG protocol in [27].

The shared secret in the above DKG protocols may natrii®rmly random; this
is a direct effect of using onlpLog commitments having only computational secrecy.
(See [28,53] for a possible adversary attack.) In many cases, we do e&d & uni-
formly random secret key; the security of these schemessrel the assumption that
the adversary cannot compute the secret. Most of our sch&méarly only require the
assumption that it is infeasible to compute the secret giudslic parameters and we
stick with DLog commitments those cases. However, we do indeed need amtyifor
random shared secret in few protocols. We mandate the fioltpatronger correctness
and secrecy properties based on the DKG correctness amtgeafined in [28¢4.1].

Strong Correctness (DKG-sC). Along with the DKG-C propertys is now uniformly
distributed inZ,,.

Strong Secrecy (DKG-sS).No information about can be learnt by the adversary ex-
cept for what is implied by the public parameters.

In this case, we use Pedersen commitments, but we do not grif@anethodology
defined by Gennaro et al. [6], which increases the numberwidse in the protocol.
We observe that with the random oracle assumption at ouposlidpthe communica-
tionally demanding technique by Gennaro et al. can be reglagth the much simpler
computational non-interactive zero-knowledge proof afiaily of committed values



NIZKPK =¢,.n, described in Eq. 1. The simulator-based proof for the abgwnilar
to that in [28,84.3] and is included in [1]. We represent DKG protocols ushepDLog
and Pedersen commitmentsSGp oy andDKGpeq respectively. For nodé;,

(c<;>, ) = DKGprog(n, 1, 7, g, i) 3)

(Clon [C0) NIZKPK =com], 5i, 1) = DKGpea(n, t, 7, 9. b aiyal) — (4)
Here, is the number of VSS instances to be chosenrc(f < 2t + 1), g,h € G
are commitment generators and, o, € Z, are respectively a secret and random-
ness shared by;. For ¢, ¢’ € Z,[z] of degreet with ¢(0) = s andy’(0) = ¢/,
c< > = [g%, g% D), g¥ ™) andcg;:;;) = [g°h®, g OR¥' D) ... qe)p¥ ()] gre
respectlverDLog and Pedersen commitment vectors. The optional NIZKPK,, is
a vector of proofs that the entries@@ andcgjzfl;) commit to the same values.

In the most basic form dDKG, nodes generate shares of a seereiosen jointly
at random fromz,. Here, every node generates a randgme Z, and shares that
using theDKG protocol withDLog or Pedersen commitments BXG(n,t,f = ¢ +
1,4, [h],r:, [r}]) where the generatdrand randomness are only required if Pedersen
commitments are used. We represent the correspondingepistas follows:

<C<(;>’Zl) = Randompyog(n, ¢, 9) (5)

(c<(; 0, [cg)),ler(PKECOm],zi,zg) — Randompeq(n, £, 9, h). 6)
Distributed Addition over Z,. Let o, 3 € Z, be two secrets shared amonghodes
using theDKG protocol. Let polynomialgf (z), g(z) € Z,[z] be the respectively asso-
ciated degree-polynomials and let € Z, be a non-zero constant. Due to the linearity
of Shamir’s secret sharing [37], a nod® with sharesy; and 5; can locally generate
shares ot + 8 andca by computingy; + 5; andca;, wheref (x) + g(z) andef(x) are
the respective polynomialg(x) + g(z) is random if either one of (z) or g(x) is, and
cf(x) is random iff (z) is. Commitment entries for the resultant shares respdgtive

(el = (ci), (c)) and(c”) = (cfs))

Distributed Multiplication over Z,,. Local distributed multiplication of two shared se-
cretsa andf3 looks unlikely. We use a distributed multiplication prodbagainst a com-
putational adversary by Gennaro et al. [88]. However, instead of their interactive
zero-knowledge proof, we utilize the pairing-badeH problem solving technique
to verify the correctness of the product value shared by & mmh-interactively. For
sharesy; and3; with DLog commitmentsy®: andg?, given a commitmeng®:”: of

the shared product, other nodes can verify its correctngssdcking ife(g%:, §%) <
e(g>Pi, §) provided the groups af andg are pairing-friendly. We observe that it is also

possmle to perform this verification when one of the invdleemmitments is a Peder-

sen commitment. However, if both commitments are Pedersemmitments, then we

have to comput®Log commitments for one of the values and employ NIZKRK,,,

to prove its correctness in addition to using the pairingelohverification. In such a



case, the choice between the latter technique and the temadtive version of zero-
knowledge proof suggested by Gennaro et al. [36] depends inpplementation effi-
ciencies of the group operation and pairing computations.

In our IBC schemes, we always use the multiplication prdtedth at least one
DLog commitment. We denote the multiplication protocol involyitwo DLog com-
mitments asvlulp oy and the one involving a combination of the two types of commit
ments aMulpeq. For the protocol correctness, along with recoverabilityatunique
value (says), protocolMul also requires that = 3. For the protocol secrecy, along
with the secrecy oy, the protocol should not provide any additional informatio
about the individual values af or 5 oncea is reconstructed.

(o). (@B):) = Mulowog(n,t, 6", (€l ) s (€. 8)) (7)
(clme™. (aB)i, (aB):) = Mulpea(n,t, g, b, (Clg) i) (¢, 51, 31)) (8)

For Mulpiog, g* = g or §. For Mulpeg, without loss of generality, we assume tiat
is distributed with the Pedersen commitment. If insteagses Pedersen commitment,
then the Pedersen commitment groups(fe#) change tgy andh instead ofj andh.

Briefly, the protocol works as follows. Every honest nodesrthieDKG(n, ¢, 2t +
1,9, [h], a3, [;3]]) from Eq. 3 or 4. As discussed above, pairing-based DDH sglvin
is used to verify that the shared value is equal to the proofuet and3;.* At the end,
instead of adding the subshares of the selected VSS instasary node interpolates
them at index to get the new shargxy(3); of af.

The aboveMul protocols can be seamlessly extended for distributed ctatipn of

any expression having binary produdﬁP(s) For¢ shared secrets,, - - - , x4, and their

DLog comm|tment§(‘/’c1 e ,C<( , shares of any binary product = >""" | k;zq, s,

with known constants and |nd|ce$z1, b; can be easily computed by extending the pro-
tocol in Eq. 7. We denote this generalization as follows.

(6603:#1) = Mllons 9" (s}, (€ (ea)e) - (€5 (@)

NodeP; sharesy " k;(za,),(xq,);. For atype 1 pairing, the correctness of the sharing

is verified by other nodes agg: v (we.)i (@) ) ], e((g(@e:)7)ki, g(=.)5). For

type 2 and 3 pairings, NIZKPKp,,4 is used to providdLog commitments to the
(xp,); With generatog, and then a pairing computation like the above is used. We use
Mulgp in Eq. 9 during distributed private-key extraction in the BBE scheme ir§3.5.

Sharing thelnverse of a Shared Secret. Given an(n, t)-distributed secret, computing
shares of its inverse~! in distributed manner (without reconstructiny can be done
trivially but inefficiently using a distributed computatiof o?—*; this involvesO (log p)
distributed multiplications. However, using a techniqyeBar-llan and Beaver [33],
this can be done using just oRandom and oneMul protocol. This protocol involves
interpolation of the product of the secretwith a distributed random element If =

! For type3 pairings, a careful selection of commitment generators is required ke e
pairing-based verification possible.



is created usin@Log commitments and is not uniformly random, the produetmay
leak some information about. We avoid this by using Pedersen commitments while
generating:. For a generatag™, we represent this protocol as follows:

(CEZ*_;)’ (a_l)i> = Inverse(n,t, g, h, (CE;)’O”)) (0

The protocol secrecy is the same as that of DKG except it ime@fin the terms of
o~ ! instead ofw; for the correctness property, along with recoverabiliyatunique
value s, this protocol additionally mandates that= «~'. For a distributed secret

(Cg‘;, ai), protocollinverse works as follows: Every nod®; runs (CE;’Z;), 2, zé) =

Randompeq(n, ¢, §, h) and computes shares(af, w') = (az, az’) as (Cg"%’/), wy, w§>
= Mulpeg(n, ¢, §, h, (C<(;)7ai) ; (CE;’Z)), 2, zz’-)). It then sendgw;, w!) to each node

and interpolates using the correct received sharesulf= 0, repeats the above two
steps, else locally computéa—1); = w~'z;. Finally, it computes the commitment

Cgf;) usingw !, CE;;) and if required, any of the NIZKPK techniques. A modified
form of this protocol is used in the distributed PKG for SKHIh §3.4.

3 Distributed PKG for IBE

We present distributed PKG setup and private key extragiiotocols for three IBE
schemes: BF-IBE [3], SK-IBE [11], and modified BBBE [9]. Each of these schemes
represents a distinct important category of an IBE clasdifia defined by Boyen [38].
They respectively belong tfull-domain-hashiIBE schemesgexponent-inversiohBE
schemes, andommutative-blindindBE schemes. The distributed PKG architectures
that we develop for each of the three schemes apply to evegnsein their respective
categories. Our above choice of IBE schemes is influencedrbgemt identity-based
cryptography standard (IBCS) [19] and also a comparativdysby Boyen [9], which
finds the above three schemes to be the most practical IBEnsshia their respective
categories. In his classification, Boyen [38] also inclualesther category for quadratic-
residuosity-based IBE schemes; however, none of the knohenses in this category
are practical enough to consider here.

The role of a PKG in an IBE scheme ends with a client’s privag-extraction and
the distributed form of the PKG does not affect the encryptad decryption steps of
IBE. Consequently, we define only the distributed PKG sehgppivate-key extraction
steps of the three IBE schemes under consideration. Wd theadriginal encryption
and decryption steps in the extended version of the paper [1]

3.1 Bootstrapping Procedure

Each scheme under consideration here requires the foliptviee bootstrapping steps.

1. Determine the node group sizeand the security threshotdsuch that, > 3t + 1
(the asynchronous case)or> 2t + 1 (the synchronous case).



2. Choose the pairing type to be used and compute gréygs, andG of prime
orderp such that there exists a pairin@f the decided type with : G x G — Gr.
The security parameterdetermines the group ordgr

3. Choose two generatogse G andg € G required to generate public parameters as
well as the commitments. With a tydeor 2 pairing, sety = ¢(§).

Any untrusted entity can perform these offline tasks. Hobé&b nodes can verify the
correctness of the tuple:, t) and confirm the group choicés, G, andG as the first
step of their distributed PKG setup. If unsatisfied, they magline to proceed.

3.2 Formal Security Model
An IBE scheme with arin, t)-distributed PKG consists of the following components:

— A distributed PKG setup protocdbr node P; that takes the above bootstrapped
parameters:, ¢t andG as input and outputs a shaseof a master secret and a
public-key vectork,,,;, of a master public key ana public-key shares.

— A distributed private key-extraction protocfar nodeP; that takes a client identity
I D, the public key vectoK,,,;, and the master-secret shafeas input and outputs
a verifiable private-key shar p,. The client computes the private kédyp after
verifying the received sharebp;.

— An encryption algorithmthat takes a receiver identityD, the master public key
and a plaintext messadé as input and outputs a cipherteXt

— A decryption algorithnfor client with identityl Dthat takes a ciphertext and the
private keyd, p as input and outputs a plaintekf.

Note that the above distributed PKG setup protocol doesatptire anydealerand
that we mandate verifiability for the private-key sharebheathan obtaining robustness
using error-correcting techniques. During private-keyaotions, we insist on minimal
interaction between clients and PKG nodes—transferringtityecredentials from the
client at the start and private-key shares from the noddweatnd.

To define security against an IND-ID-CCA attack, we consttierfollowing game
that a challenger plays against a polynomially boundexhitdid Byzantine adversary.
Setup: The adversary chooses to corrupt a fixed sétruddes and the challenger sim-
ulates the remaining — ¢ nodes to run a distributed PKG setup protocol. At the end of
the protocol execution, the adversary receivelsares of a shared master secret for its
nodes and a public key vectéf,,,. The challenger knows the remaining- ¢ shares
and can derive the master secrehas t > ¢ + 1 in any communication setting.

Phase 1.The adversary adaptively issues private-key extractiahd@eryption queries
to the challenger. For a private-key extraction qu@r), the challenger simulates the
distributed key extraction protocol for its — ¢ nodes and sends verifiable private-key
shares for it31 — ¢t nodes. For a decryption quetyD, C), the challenger decrypts

by generating the private ke, or using the master secret.

Challenger: The adversary chooses two equal-length plaintédtsand M, and a
challenge identity D.;, such thatl D.;, does not appear in any private-key extraction
query in Phasé. The challenger chooséscr {0,1} and encrypts\;, for | D., and

Kpup, and gives the ciphertext., to the adversary.



Phase 2:The adversary adaptively issues more private-key extnactnd decryption

queries to the challenger except for key extraction query(f®.,) and decryption

queries for(l D.p, Cep)-

Guess:Finally, the adversary outputs a guéss {0, 1} and wins the game if = ¥'.
Security against IND-ID-CCA attacks means that, for anyypomially bounded

adversaryp’ = b with probability negligibly greater thaty 2.

3.3 Boneh and Franklin’'s BF-IBE

BF-IBE [3] belongs to the full-domain-hash IBE family. In &¥BBE setup, a PKG
generates a master keye Z, and a public keyy® € G, and derives private keys for
clients using their identities and A client with identity | D receives the private key
dip = (H(I1D)* = hip € G, whereH; : {0,1}* — G* is a full-domain crypto-
graphic hash function* denotes the set of all elementsGnexcept the identity.)

Distributed PKG Setup. This involves generation of the system master key and the sys
tem public-key tuple in thén, t)-distributed form among nodes. Each nodg; partic-
ipates in a common DKG ove#, to generate its shasg € Z,, of the distributed master

key s. The system public-key tuple is of the fom‘n) [g%, g%, -+, g°]. We obtain

this using ouRandompy o4 protocol from Eq. 5 as{C( ) = Randompyog(n, t, g).

(9)%
Private-key Extraction. As a client needs+ 1 correct shares, it is sufficient for her to
contact any2t + 1 nodes (say sap). The private-key extraction works as follows.

1. Once a client with identity D contacts every node i@, every honest nodg; € QO
authenticates the client’s identity and returns a privagsharehi, € G over a
secure and authenticated channel.

2. Upon receiving + 1 valid shares, the client can construct her private thyas
dip=TIIpecolhip) € G, where the Lagrange coefficiekt = HP co\ (i} 750
The client can verify the correctness of the computed mnkmyd. p by check-

inge(g,dip) = e(g ,hip). If unsuccessful, she can verify the correctness of each
receivedh/’t by checking ife(g, hi'p) < e(g®, i p). An equality proves the cor-
rectness of the share, while an inequality indicates miebielr by the node>;

and its consequential removal frogh

In asymmetric pairings, elements @fgenerally have a shorter representation than
those ofG. Therefore, we put the more frequently accessed systenicgkéy shares
in G, while the occasionally transferred client private-kegrsls belong té:. This also
leads to a reduction in the ciphertext size. However, foetypairings, an efficient
hash-to& is not available for the grouﬁ} [20]; in that case we compute the system
public key shares ifi; and use the more feasible groGfor the private key shares.

Proof of Security. Using the encryption and decryption steps of Bu#lldent version
of BF-IBE [3, §4.2] along with the above distributed setup and key extadgirotocols,
we prove the IND-ID-CCA security of BF-IBE with the, t)-distributed PKG (n, t)-
Fullldent) based on thB8DH assumption. Hereafteyz, ¢p andgy, denote the number
of extraction, decryption and random oraélg queries respectively.



Theorem 1. Let H, H,, H3 and H4 be random oracles. Letl; be an IND-ID-CCA
adversary that has advantagg(x) in running timet; (x) against(n, t)-Fullldent mak-
ing at mosty, ¢p, qm,, ¢, ¢H,, aNdgy, queries. Then, there exists an algoritifin
that solves th8DH problem inG with advantage roughly equal t9 (%) /(qm, 4, (qr, +
qu,)) and running timeD(t1(k), 4k, 4o, GH,  AH,» 4Hs GHa)-

For their proof, Boneh and Franklin define two additional lpukey encryption
schemesBFBasicPub [3, Sec. 4.1], and its IND-CCA secure versiBRBasicPub™
[3, Sec. 4.2] and prove the security Bfillldent in the following proof sequence:
Fullldent — BFBasicPub™ — BFBasicPub — BDH. We use distributed versions
of these encryption scheme@t, ¢)-BFBasicPub”™ and (n, t)-BFBasicPub respec-
tively, and prove the proof sequenc¢e, ¢)-Fullldent — (n,t)-BFBasicPub™ —
(n,t)-BFBasicPub — BDH. For the complete proof, refer to the extended version
of the paper. [1]

3.4 Sakai and Kasahara's SK-IBE

SK-IBE [11] belongs to the exponent-inversion IBE familyerd, the PKG generates
a master key € Z, and a public keyy®* € G just as in BF-IBE. However, the key-
extraction differs significantly. Here, a client with id@ptl D receives the private key

dip= g7 ¢ G, whereH] : {0,1}* — Z,.
Distributed PKG Setup. The distributed PKG setup remains the exactly same as that of

BF-IBE, wheres; € Z, is the master-key share for noﬂ’gandc( $) — = [g% g%, -+, g°"]
is the system public- key tuple.

Private-key Extraction. The private-key extraction for SK-IBE is not as straightfard

as that for BF-IBE. We modify thénverse protocol described ir§2.3; specifically,
here a private-key extracting client receives from the node in ste@ and instead

of nodes, theclient performs the interpolation. In stefy instead of publishing, nodes
forward g% and the associated NIZKRk;,,,,, directly to the client, which computes
g* and thend,p = (gz)“fl. The reason behind this is to avoid possible key escrow
if the node computes botf¥ andw. Further, the nodes precompute another generator

h € G for Pedersen commitments US"@E;;?TO = Randomp,e4(n,t, §), and set
= (),

1. Once a client with identity D contacts alln nodes the system, every noﬂ’eau—
thenticates the client’s identity, rur(S?E;: 2y 2 Z) = Randomeeq(n, t, g, )and
computesst® = s; + H} (1 D) and for0 < j < n, (Cé; )) (CEQD gHi(D) —
¢*i 710D Randompeq makes sure that is uniformly random.

2. b performs(CE"j]z’;) w;, w ) Mulpeg(n, t, g, ,(C( 'D) ) (Cg;)) zl,zl))

wherew = s' Pz = (s+H! (I D))z andw’ = (s+H/(l D))z’ and send{c(w:; ),wz)

along with NIZKPKz ¢ o (w;, wl, (CE:;;)) , (ngwhlg’ )) ) to the client, which upon



receivingt + 1 verifiably correct share@u;) reconstructsv using interpolation. If
w # 0, then it computesy—! or else starts again from step

, =)\ _ sz (2,2") ; VA 1))
3. NodeP; sends(C@))i =g andcmﬁ> along with NIZKPKzcom (2i, 2, (C@)i,
(z,z')) H
(C@Jl) i) to the client.
4. The client verifies<C<(;>)>_ using the received NIZKPK¢,.,., interpolates + 1
valid g** to computej® and derives her private kQ@Z)w_l = g<s+1§<' oy,

This protocol can be used without any modification with arpetyf pairing. Further,
online execution of th&kandompeg cOmputation can be eliminated using batch pre-

computation of distributed random elemeécsg’g;), 2, z;) )

Proof of Security. The security of SK-IBE with a distributed PKGr{, ¢)-SK-IBE) is
based on th&DHI assumption.

Theorem 2. Let H}, H,, Hs and H, be random oracles. Lefl; be an IND-ID-CCA
adversary that has advantagg(x) in running timet; (k) against(n, t)-SK-IBE making
atmostyr, qp, 9u;, qu,, 45, aNdgy, queries. Then, there exists an algoritifihat
solves theBDHI problem inG with advantage roughly equal t (~)/(qz qm, (qm, +

qm,)) and running imeD (t1(k), 4k, 4D qny, QHs - AHs » GH, )-

Chen and Cheng [39] prove the security of the original SK-{B&ocol in a proof se-
quence: SK-IBE— SKBasicPub™’ — SKBasicPub — BDHI, whereSKBasicPub

and SKBasicPub™ [39, §3.2] are public key encryption schemes based on SK-IBE.
We prove Theorem 2 by showir(g, t)-SK-IBE — SKBasicPub”’. For the complete
proof, refer to the extended version of the paper [1].

3.5 Boneh and Boyen's BB-IBE

BB;-IBE belongs to the commutative-blinding IBE family. Bonahd Boyen [32] pro-
posed the original scheme with a security reduction to tresgmal BDH assump-
tion [40] in the standard model against selective-ideratitacks. However, with a prac-
tical requirement of IND-ID-CCA security, in the recent IBGtandard [19], Boyen
and Martin proposed a modified version, which is IND-ID-CG#csre in the random
oracle model under thRDH assumption. In [9], Boyen rightly claims that for practical
applications, it would be preferable to rely on the randamete assumption rather than
using a less efficient IBE scheme with a stronger securityraption or a weaker attack
model. We use the modified BBBE scheme as described in [9] and [19].

In the BB, -IBE setup, the PKG generates a master-key trile3, v) € Zf; and an
associated public key tuplg?, g7, e(g, §)°”). A client with identity| D receives the
private key tuplel, p = (§*¢+ (@ (D+N)r o) e G2,

Distributed PKG Setup. In [9], Boyen does not include the parametéraind §°
from the original BB scheme [32] in his public key, as they are not required during
key extraction, encryption or decryption (they are not ¢editfor security reasons).
In the distributed setting, we in fact need those parametebe public for efficiency



reasons; a verifiable distributed computatione6§, j)*” becomes inefficient other-
wise. To avoid key escrow of clients’ private-key composefit’), we also need
andCES;; otherwise, parts of clients’ private keys would appearublic commitment

vectors. As in SK-IBE in§3.4, this extra generatoir € Gis precomputed using the
Randomp, g protocol. Distributed PKG setup of BHnvolves distributed generation
of the master-key tuplé, 3,~). Distributed PKG nodé®; achieves this using the fol-

lowing threeRandomp, o4 protocol invocations(cgg),ai) = Randompyog(n, t, g),
(cis). 5) = Randomorag(n, t, 3), and(C(1), 7 ) = Randomorog(n, ,9).

Here,(«;, 8;, ;) is the tuple of master-key shares for ndée We also need’ggg;
each nodeP; provides this by publishing(cgg))i = kP and the NIZKPK-p 1,04
(Bi,§%, hP). The tuple(Cg;”Q, e(g,9)*8, CE;;, Cgfg) forms the system public key, where

e(g, §)*? can computed from the public commitment entries. The veit{fg#r, although
available publicly, is not required for any further compiga.

Private-key Extraction. The most obvious way to compute a BBrivate key seems
to be for P; to computea;3; + (a;Hi(l D) + 7;)r; and provide the corresponding
goiPit (e Hi(1D)+a)ri g to the client, who now needs + 1 valid shares to obtain her
private key. Howeveky; 3; + («; H{ (1 D)++;)r; here is not a share of a random degree-
2t polynomial. The possible availability gf to the adversary creates a suspicion about
secrecy of the master-key share with this method. For @rikay extraction in BB-

IBE with a distributed PKG, we instead use thiellgp protocol in which the client is
provided withg™:, wherew; = (a8 + (aH/(l D) + v)r); is a share of random degree

t polynomial. The protocol works as follows.

1. Once a client with identity D contacts alln nodes the system, every noffeau-

thenticates the client’s identity and ruéégz’;;), [62}2;7 NIZKPKECOm],ri,ri) =
Randomepeg(n, t, f, iz,g). Randompey makes sure thatis uniformly random.
2. P, computes its share; of w = o5 + (aH{(l D) 4+ ~)r usingMulgp in Eq. 9.

(Cl2) ) = Mules (.1, f.g" dese. (€(5). o) . (2.8 . () 7) . (€p) ).

Here,desc = {(1,1,2), (Hi(lI D), 1,4),(1, 3,4)} is the description of the required
binary product under the orderingy, 5,~,r) of secrets. To justify our choices
of commitment generators, we present the pairing-basdtication in protocol
Mulgp: e(ge%+ @ i0D3r fy L e(ges e (g ) i Dgnt ). For type
2 and3 pairings,g* = g, as there is no efficient isomorphism froghto G. For
type 1 pairings, we usg* = h = ¢~ 1(h). Otherwise, the resultant commitments
for w (which are public) will contain the private-key pagt?+(@Hi(1D+v)r,

3. Once theMulgp protocol has succeeded, Noffegenerateg™: andg™ and sends
those to the client over a secure and authenticated channel.

4. The client generates her private kg +(@#1(D+7)r 5r) py interpolating the
valid received shares. For typeand type2 pairings, the client can use the pairing-
based DDH solving to check the validity of the shares. Howdwetype3 pairings,



without an efficient mapping frorfs to G, pairing-based DDH solving can only be
employed to verifyg*:. As a verification ofy":, nodep; includes a NIZKPK p 1.4

(ri, h™i, ™) along withg™ andg".

As in SK-IBE in §3.4, online execution of thRandomp oy computation can be elimi-

nated using batch precomputation of distributed randomei&s(cgg,n).

Proof of Security. Along with the above distributed setup and private-key aotton
protocols, we prove IND-ID-CCA security of BBIBE with the (n, ¢)-distributed PKG
((n,t)-BB1-IBE) based on thBDH assumption. To the best of our knowledge, an IND-
ID-CCA security proof for the modified BBIBE scheme has not been published yet.

Theorem 3. Let Hj, Ho, H3 and H} be random oracles. Letl be an IND-ID-CCA
adversary that has advantagé<) in running timet(x) against(n, t)-BB; -IBE making
at mostqg, 9o, qu;, qu,, qm;, and gy, queries. Then, there exists an algorittisn
that solves th&DH problem inG with advantage roughly equal tdx)/(qu; ¢zr;) and
running timeO(t(x), 4&, 4D, quy s 4H, > IHy, GH, )-

For the proof, refer to the extended version of the paper [1].

Using a more expensive DKG protocol with uniformly randontput, all of our
proofs would become relatively simpler. However, note that use of DKG without
uniformly random output does not affect the security reuncfactor in any proof.
This is something not achieved for the known previous pmitevith non-uniform
DKG such as threshold Schorr signatures [28]. Further, wead@iscuss the liveness
and agreement properties for our asynchronous protocdieagss and agreement of
all the distributed primitives provides liveness and agreet for the distributed PKG
setup and distributed key extraction protocols. Finally,dimplicity of the discussion,
it would have been better to combine three proofs. Howelat, lboks difficult, if not
impossible, as the distributed computation tools usedéadidistributed PKGs and the
original IBE security proofs vary a lot from a scheme to sceem

Finally, observing the importance of proactiveness andoalaitity to handle group
dynamics in any practical system, we also discuss the pveagcurity and group mod-
ification primitives for our distributed PKGs in the exteddeersion of the paper [1].

4 Comparing Distributed PKGs

In this section, we discuss the performance of the setup apdktraction protocols
of the above three distributed PKGs. For a detailed compais the encryption and
decryption steps of BF-IBE, SK-IBE and BBBE, refer to [9]. The general recommen-
dations from this survey are to avoid SK-IBE and other exptiiraversion IBEs due to
their reliance on the stron@DHI assumption, and that BRIBE and BF-IBE both are
good, but BB-IBE can be a better choice due to BF-IBE’s less efficient yotion.

Table 1 provides a detailed operation count and key size adsgn of three dis-
tributed PKGs. We coudKG instances, pairings, NIZKPKs, interpolations and public
and private key sizes. We leave aside the comparativelyl smadnentiations and other
group operations. As mentioned §8.5, for BB, -IBE, with pairings of type 1 and 2,



Table 1. Operation count and key sizes for distributed PKG setups and distributedepkey

extractions (per key)

BF-IBE SK-IBE BB:-IBE
Setup ExtractiofSetup Extraction|Setup Extraction
Operation Count
Generatot or h X v v
DKG? (precomputed) - 0 - 1P - 1P
DKG (online) 1P 0 1P 17 3P 1P
Parings @PKG Node 0 0 0 on 1° on
Parings @Client - 2(2t+2)| - 0 - 2n°
NIZKPK 0 0 0 2n n® 2nP
Interpolations 0 1 0 2 1 2
Key Sizes

PKG Public Key (n+ 2)G® (n+3)G (2n +3)G, (n +2)G, (1)Gr
Private-key Shares | (2t +1)G°  |(3n)Z,, (3n +1)G (2n)Z,°, (2n)G

& For DKG, D indicates use ddLog commitments, while P indicates Pedersen commitments.

® For typel and2 pairings,2n extra pairings replace NIZKPKs. Further, thn Z, elements
are omitted from the private-key shares.

° For type 2 parings, the groups used for the PKG public key and thetikey shares are
interchanged.

there is a choice that can be made between usiNZKPKs and2n pairing com-
putations. The table shows the NIZKPK choice (the only apfiar type 3 pairings),
and footnoteh shows where NIZKPKs can be traded off for pairings. An effitial-
gorithm for hash-td5 is not available for typ& pairing curves and we interchange the
groups used for the public key and client private-key shdtestnotec indicates how
that affects the key sizes.

In Table 1, we observe that the distributed PKG setup and itghiited private-
key extraction protocols for BF-IBE are significantly morficgent than those for
SK-IBE and BB-IBE. Importantly, for BF-IBE, distributed PKG nodes cantrext
a key for a client without interacting with each other, whistmot possible in the other
two schemes; both BBIBE and SK-IBE require at least ongKG instance for every
private-key extraction; the second required instance esloalich precomputed. There-
fore, for IBE applications in the random oracle model, wegasj the use of the BF-IBE
scheme, except in situations where private-key extragtioa rare and efficiency of the
encryption step is critical to the system. For such appbeat we suggest BBIBE as
the small efficiency gains in the distributed PKG setup aritheiion protocols of SK-
IBE do not well compensate for the strong security assumptgjuired. BB-IBE is
also more suitable for typgepairings, where an efficient map-to-group hash functign
is not available. Further, BBIBE can also be proved secure in the standard model with
selective-identity attacks. For applications demandiegusty in the standard model,
our distributed PKG for BB-IBE also provides a solution to the key escrow and single
point of failure problems, using pairings of typer 2.



5 Concluding Remarks

We have designed and compared distributed PKG setup aratekgy extraction pro-
tocols for BF-IBE, SK-IBE, and BB-IBE. We observed that the distributed PKG pro-
tocol for BF-IBE is the most efficient among all and we suggtsstse when the system
can support its relatively costly encryption step. For eyst requiring a faster encryp-
tion, we suggest the use of BBBE instead. However, during every distributed private
key extraction, it requires a DKG and consequently, intdsacamong PKG nodes.
That being said, during private-key extractions, we susfcdlg avoid any interaction
between clients and PKG nodes except the necessary idantitg start and key share
transfers at the end. Finally, each of the above schemessents a separate IBE frame-
work and our designs can be applied to other schemes in tremeedorks as well.
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