
On Message Recognition
Protocols: Recoverability
and Explicit Confirmation

Ian Goldberg
David R. Cheriton School of Computer Science, University of Waterloo
Waterloo, Ontario Canada N2L 3G1
Email: iang@cs.uwaterloo.ca

Atefeh Mashatan
School of Computer and Communication Sciences, EPFL
CH-1015 Lausanne, Switzerland
Email: atefeh.mashatan@epfl.ch

Douglas R. Stinson
David R. Cheriton School of Computer Science, University of Waterloo
Waterloo, Ontario Canada N2L 3G1
Email: dstinson@uwaterloo.ca

Abstract:
We look at message recognition protocols (MRPs) and prove that there is a one-

to-one correspondence between stateless non-interactive MRPs and digital signature
schemes.

Next, we examine the Jane Doe protocol and note its inability to recover in case of a
certain adversarial disruption. We propose a variant of this protocol which is equipped
with a resynchronization technique that allows users to resynchronize whenever they
wish.

Moreover, we propose another protocol which self-recovers in case of an intrusion.
This protocol incorporates the resynchronization technique within itself. Further, we
enumerate all possible attacks against this protocol and show that none of the attacks
can occur. Finally, we prove the security of the new protocol and its ability to self-
recover once the disruption has stopped.

Finally, we propose an MRP which provides explicit confirmation to the sender on
whether or not the message was accepted by the receiver.

Keywords: Cryptographic Protocols, Message Authentication, Message Recognition,
Self-Recoverability, Explicit Confirmation, Pervasive Networks, Ad Hoc Networks

Biographical notes: Ian Goldberg is an Assistant Professor in the David R. Cheriton
School of Computer Science at the University of Waterloo, and a member of that
university’s Cryptography, Security, and Privacy (CrySP) research group. His research
currently focuses on developing usable and useful technologies to help Internet users
maintain their security and privacy.

Atefeh Mashatan is a Postdoctoral Researcher in the the Security and Cryptography
Laboratory (LASEC) at the Swiss Federal Institute of Technology, Lausanne. Her
main research interests are lightweight cryptographic protocols and their provable
security properties.

Douglas R. Stinson holds the position of Professor and University Research
Chair in the David R. Cheriton School of Computer Science at the University of
Waterloo. He is a member of the Cryptography, Security, and Privacy (CrySP)
research group. Dr. Stinson’s research interests include cryptography and computer
security, combinatorics and coding theory, and applications of discrete mathematics
in computer science.

1 Introduction

Message recognition in ad hoc networks has been motivated
in the literature by the following example (Lucks, Zenner,
Weimerskirch & Westhoff 2005). Consider Alice and Bob,
two strangers who meet at a party for the first time. They
make a bet before they leave the party. Later, the outcome
turns out to be in favour of Alice, and a few days later,
Bob receives a message claiming to be sent from Alice. The
message includes a bank account number and asks Bob
to deposit Alice’s prize to that bank account. How can
Bob be assured that this message was indeed sent from
the entity who introduced herself as “Alice” at the party?
That is, Bob wants to recognize “Alice”, whoever she was,
or a message that was sent from her. This problem has
a solution if Alice and Bob exchange some information,
which is not necessarily secret, at the party.

Alternatively, let Alice and Bob be two small devices in
a hostile environment. They have previously “met” in an
environment that allowed them to send authenticated mes-
sages, but the messages were not confidential. Later, Alice
wants Bob to recognize her or recognize the messages sent
from her to Bob. There is an adversary, Eve, who is trying
to make Bob recognize Eve as Alice, or accept messages
from Eve as sent from Alice, where Alice has never sent
those messages. Note that we do not consider replay at-
tacks as threats in this scenario; a simple message counter
can address them. A message recognition protocol is con-
sidered to be secure if Eve’s attempts are detected by Alice
or Bob. This problem has been considered in a context
where we are dealing with devices with low computational
power which cannot handle public-key computations and
where no pre-deployed shared secret exists. On the other
hand, the devices have access to a narrow-band authenti-
cated channel at the initialization step and are later placed
in a constrained, possibly hostile, insecure environment.

Recall the following widely used definitions of entity au-
thentication and message authentication from the Hand-
book of Applied Cryptography (Menezes, van Oorschot &
Vanstone 1996). Entity authentication is a security no-
tion which assures the identity of a participating party
to a second party. Message authentication, on the other
hand, provides data origin authentication with respect to
the original message source and does not have to provide
uniqueness and timeliness.

We now define entity recognition, a security notion re-
lated to the entity authentication. Entity recognition is a
weaker security notion than entity authentication; entity
recognition refers to the process where two parties meet ini-
tially and one party can be assured in future conversations
that it is communicating with the same second party. It
should also provide uniqueness, that is, the corroborative
evidence obtained in this process should uniquely corre-
spond to the identity of the claimant. It should also assure
timeliness, that is, to provide verifiable evidence that the
claimant is active at the time of, or immediately before,
the evidence was obtained.

Copyright c© 200x Inderscience Enterprises Ltd.

Message recognition is a weaker security notion than
message authentication and it provides data integrity with
respect to the data origin. It ensures that the entity who
sent the message is the same in future conversations. How-
ever, it does not have to provide uniqueness or timeliness.

Public-key techniques such as digital signature schemes
solve the problem of recognition easily. However, using
these techniques in some scenarios may be very costly. For
instance, there may be no pre-deployed authentic informa-
tion accessible. Also, we may not be able to assume trusted
third parties are available to form a trusted infrastructure.
Further, we may be dealing with devices with very low
computational power where public-key computations are
too heavy to be carried out. On the other hand, secret-key
techniques require the existence of a secure channel where
the secret keys can be transmitted confidentially. In a dy-
namic environment with no infrastructure, this assumption
may not be easily realized.

The question is which security objectives can be achieved
among devices with low computational power in an en-
vironment where no pre-established authentic informa-
tion exists and without the presence of a trusted third
party. Weimerskirch and Westhoff (2003) argued that
in such an environment, achieving authentication is not
possible and that all one can achieve is recognition se-
curity. They further note that recognition is often all
that is required in most dynamic environments. Hence,
the weaker security goals of entity and message recog-
nition are often pursued (Anderson, Bergadano, Crispo,
Lee, Manifavas & Needham 1998, Mitchell 2003, Weimer-
skirch & Westhoff 2003, Hammell, Weimerskirch, Gi-
rao & Westhoff 2005, Lucks, Zenner, Weimerskirch &
Westhoff 2008).

There are two communication channels considered in the
setting of recognition protocols: an insecure broadband
channel which is available all the time, and an authenti-
cated non-confidential narrow-band channel, which is only
accessible once, at the very beginning of the protocol. That
is, the narrow-band channel is used for the initial session
between two users and later sessions occur over the inse-
cure channel.

The goal of the adversary Eve is to make Bob accept
some message M as coming from Alice, where M was not
in fact previously sent by Alice. The attack model consists
of Eve giving various messages to Alice to send to Bob and
interacting with the resulting protocol runs. Eve can ob-
serve (but not modify) the messages on the narrow-band
channel, and has full access to observe, inject, change, or
delete messages on the broadband channel. All of this can
be done in an adaptive fashion. For the message recogni-
tion protocol to be considered secure, it must be difficult
for any polynomially bounded adversary Eve to achieve
her goal.

1.1 Our Contribution

We first prove that there is a one-to-one correspondence
between stateless non-interactive MRPs and digital signa-

2

ture schemes. Digital signature schemes are well studied
in the cryptographic literature and their computational
complexity is usually much higher than the level achiev-
able by the devices considered in our scenario of interest.
Hence, the one-to-one correspondence indicates that state-
less non-interactive MRPs are unsuitable for these devices,
and prompts us to focus on either interactive MRPs or
non-interactive stateful MRPs.

We next examine previous recognition protocols pro-
posed in the literature (Anderson et al. 1998, Mitchell 2003,
Weimerskirch & Westhoff 2003, Hammell et al. 2005, Lucks
et al. 2008), and conclude that the Jane Doe message recog-
nition protocol proposed by Lucks et al. (2008) is the most
suitable. Hence, we look at this protocol in more detail
and note that in case of a particular adversarial disrup-
tion, this protocol fails to recover. In other words, the
adversary can trap one party in a state that he or she will
no longer accept legitimate messages that were sent by the
other party; this is much stronger than a denial of service
attack, as even after the adversary completes the attack
and has no further contact with the parties, the parties
remain unable to communicate.

We propose two solutions to remedy this shortcoming.
The first solution consists of a variant of the Jane Doe
MRP which is equipped with a separate resynchronization
technique that allows users to resynchronize whenever they
wish or when they suspect an intrusion has occurred. This
first solution is much simpler, in terms of its instructions,
when compared to our second solution; however, this sim-
plicity comes at the price of having a separate protocol,
and having to decide when to call upon it.

It is, of course, also of interest to remedy the recover-
ability shortcoming without requiring a separate synchro-
nization procedure. In other words, one would like to in-
corporate the resynchronization technique within the pro-
tocol itself. We refer to this property as self-recoverability.
When a protocol exhibits self-recoverability, the parties in-
volved do not have to negotiate when to resynchronize; this
makes the whole system more robust. Our second solution
is a new message recognition protocol, which is based on
the Jane Doe MRP and it “self-recovers” in case of an
intrusion and does not need a separate resynchronization
process. Moreover, we analyze all possible attacks against
our protocol and prove that they can succeed with only
negligible probability. We also formally prove that our new
protocol is secure and fully recovers once the disruptions
have stopped.

In all previous MRPs, the claimant sends a message to
the verifier and hopes that the message is accepted by the
verifier. In particular, these protocols do not offer any ex-
plicit means for the claimant to learn if the verifier has
accepted or rejected the message. We call this missing
property explicit confirmation. This confirmation can be
achieved, for example, by executing a session of MRP with
the verifier sending a message to the claimant where the
content of the message relays acceptance or rejection of the
previous intended message. This solution, and other solu-
tions of this kind, requires the participants to get involved

in a procedure which has almost the same complexity as
the original primitive. As our third protocol, we propose
a new MRP which provides explicit confirmation without
requiring any extra communication between the partici-
pants.

The rest of the paper is organized as follows. Section 2 is
devoted to showing the one-to-one correspondence between
stateless non-interactive message recognition protocols and
digital signature schemes. Section 3 is dedicated to exam-
ining previous recognition protocols and noting their short-
comings. In Section 4, we describe our first solution to
overcome the recoverability problem. Section 5 is devoted
to our second solution which exhibits self-recoverability,
while Section 6 is dedicated to proving the security of this
proposal. We propose our MRP with explicit confirmation
in Section 7 and we conclude the paper in Section 8.

2 Non-interactive MRPs

In this section, we prove that there is a one-to-one
correspondence between stateless non-interactive message
recognition protocols and digital signature schemes.

Since digital signature schemes have a higher computa-
tional complexity than we deem suitable for our low-power
devices in the context of message recognition, this one-to-
one correspondence discourages any further investigation
of a stateless non-interactive MRP and convinces us to
focus on interactive MRPs or non-interactive MRPs that
incorporate state.

2.1 A General Stateless Non-Interactive MRP

A general non-interactive message recognition protocol,
where all flows are going from Alice to Bob, consists of
two flows. The first flow is the initialization step which
happens only once. The second flow, occurring over the
insecure channel, is sent once for each message to be au-
thenticated. As a result, the message and any additional
authenticating information are all being transmitted in one
flow.

Figure 1 depicts a general stateless non-interactive mes-
sage recognition protocol. The protocol is described in
terms of three (possibly randomized) functions, denoted
by gen, compose, and decompose. On input (1k), where
k is a security parameter, the function gen outputs a pair
(a, b), and b is sent to Bob.

For each message Alice wishes to send to Bob, Alice
uses compose to construct the message to be sent to Bob;
compose has access to a. Similarly, for each message Bob
receives from Alice, he calls decompose to process it while
using b as an input as well.

It is important to note that any stateless non-interactive
protocol in our network setting can be put in this form.
For this protocol to be a secure MRP, it is required
that decompose(c′, b) =⊥ with overwhelming probability
if c′ 6= compose(M,a) for some message M and a valid

3

Alice Eve Bob

compute gen(1k) = (a, b)
b

====⇒ Receive b.

Alice Eve Bob

Input (M , Bob)

c← compose(M,a)
c−−−−→ Receive c′

d← decompose(c′, b)
If d = M ′, a valid message,

output (M ′, Alice); otherwise, reject.

Figure 1: A General Stateless Non-interactive Message Recognition Protocol

pair (a, b) produced by gen. Moreover, it is required that
decompose(c, b) = M for any c output by compose(M,a).

2.2 Digital Signature Schemes with Message Re-
covery

Next, we consider a particular class of digital signature
schemes (DSS): those with message recovery. In section 2.3
we will use a simple transformation from an arbitrary DSS
to one with message recovery in order to handle the general
case.

Digital signature schemes with message recovery
(DSSMR), Figure 2, are often formulated by three algo-
rithms: key generation, sign and verify. The key genera-
tion algorithm G randomly produces a pair of public and
private keys (PK,SK) for each signer. The signer uses SK
to sign and PK is used by others to verify signatures. We
assume that any receiver has access to the signer’s public
key PK via an authentic (but not confidential) channel.
On input message M and a secret key SK, the signing al-
gorithm S, which may be randomized, outputs a signature
s. On input public key PK and a signature s, the sig-
nature verifying algorithm, V, either outputs M ′, a valid
message, or it rejects s.

A signature s of M that is honestly computed using
the secret key SK should be accepted by the verifying
algorithm using the associated public key PK. In other
words, for all M and all (PK,SK) generated by G, it holds
that V(PK,S(M,SK)) = M. We assume the standard
attack model of adaptive chosen message attack, wherein
Eve adaptively gives Alice various messages to sign. Eve’s
goal is to create a signature that Bob will accept as being
Alice’s signature on a message M that Alice, in fact, never
signed. For the signature scheme to be considered secure, it
must be difficult for any polynomially bounded adversary
to achieve this goal.

2.3 Equivalence of Stateless Non-interactive
MRPs and Signature Schemes

Given the aforementioned definitions and properties, we
obtain the following result on the equivalence of digital
signature schemes and stateless non-interactive message
recognition protocols.

Theorem 1 Given functions gen, compose, and
decompose, any stateless non-interactive message recog-
nition protocol can be transformed to a digital signature
scheme (with message recovery). Conversely, any digital
signature scheme (with or without message recovery) can
be transformed to a stateless non-interactive message
recognition protocol.

The equivalence of the two schemes is straightforward:
given gen, compose, and decompose, we need to construct
G, S, and V. Just let G = gen, S = compose, and V =
decompose.

The converse construction is well known and straightfor-
ward: if the digital signature scheme (G,S,V) has message
recovery, then simply setting gen = G, compose = S, and
decompose = V is sufficient. If the digital signature scheme
does not have message recovery, the standard transforma-
tion S ′(M,SK) = (M,S(M,SK)) (and the corresponding
change to V) yields one that does have message recovery,
and we proceed as before.

Finally, we need to show that security is preserved un-
der these transformations. This can be done easily using
reductions, by showing that an adversary that can break
the message recognition protocol can be used as a subrou-
tine to break the signature scheme, and vice versa. The
reductions are obvious, so we just give a brief sketch of the
reduction in one direction. Suppose that an adversary Os-
car can break the message recognition protocol. Now, sup-
pose that an instance of the signature scheme is specified,
with public key PK. We show how Eve can use Oscar as a
subroutine to break the signature scheme. First, Eve gives
a = PK to Bob to set up an instance of the message recog-
nition protocol. Now Oscar will adaptively choose various
messages to be transmitted in the message recognition pro-
tocol. For each such message M , Eve gives M to Alice (in
the signature scheme) and obtains the corresponding s.
Eve then gives s to Oscar. (That is, Eve simulates Alice
in the message recognition protocol using the Alice in the
signature scheme.) Eventually, Oscar outputs a new c in
the message recognition protocol that would be accepted
by Bob (in the message recognition protocol). Eve defines
s = c, which is a signature that will be accepted by Bob
in the signature scheme.

4

Alice Eve Bob

compute G(1k) = (SK,PK)
PK

====⇒ Receive PK.

Alice Eve Bob

Input (M , Bob)

S(M,SK) = s
s−−−−→ Receive s′

Compute M̃ = V(s′, PK)

If M̃ = M ′, a valid message,
output (M ′, Alice); otherwise, reject.

Figure 2: A Digital Signature Scheme with Message Recovery

2.4 Stateful Non-Interactive MRPs and an Open
Problem

Figure 3 depicts a general stateful non-interactive message
recognition protocol. Here, α is the internal (persistent)
state of Alice, initialized to a; β is the internal (persistent)
state of Bob, initialized to b. The protocol uses three (pos-
sibly randomized) functions gen, compose, and decompose
where compose has access to all of Alice’s state, and can
also update that state and, similarly, decompose has access
to and can update Bob’s state.

Following the ideas above, we are able to show that a
‘receiver-stateless’ non-interactive MRP, in which Bob does
not have a state, but Alice has a state, can be transformed
into a (stateful) DSS. However, the extra power that may
be obtained by giving state to Bob is not clear; for example,
if an adversary reorders messages, but does not otherwise
alter them, a stateful Bob may notice this and potentially
reject the messages, noting the interference, whereas a dig-
ital signature verifier would accept the reordered messages
as valid. We leave the question of whether there exist
receiver-stateful non-interactive MRPs more efficient than
digital signature schemes as an open problem.

3 Previous MRPs

In this section, we review the existing protocols in the lit-
erature which provide entity or message recognition. The
usability of each protocol is discussed in the context of net-
works with devices having low computation power and low
communication bandwidth.

The Guy Fawkes protocol was proposed by Anderson
et al. (1998). There are two variants of this protocol sug-
gested and a one-way hash function is employed in both
variants. In the first variant, random codewords, Xi, are
chosen in each session and are refreshed each time a mes-
sage, Mi, is authenticated. Alice commits to the message
and the codewords and then publishes the commitment in
a public directory which provides time-stamping services.
Later, she reveals the committed values to prove that she
is the same party who was involved in previous sessions.
However, assuming the existence of a trusted party which
provides time-stamping services is not realistic in most ad
hoc network scenarios. The second variant does not require

any interaction with a time-stamping provider and instead
requires interaction of the authenticating party with the
verifying party. The initialization phase of this proto-
col does not assume any authenticated channel; however,
it requires digital signatures for authenticating the first
blocks and codewords. This may not be suitable in ad hoc
networks and, in particular, in low-power environments.
Moreover, for a message to be authenticated in session i,
users need to commit to it in the previous session. In the
context of message recognition, this means that users are
engaged in two sessions of this protocol to authenticate a
single message, which may not be desirable.

An entity recognition protocol known as the Remote
User Authentication Protocol was introduced by Mitchell
(2003). In this protocol, a message authentication code
(MAC) is used to prove that a user is the same entity in-
volved in previous sessions. The protocol can be adapted
to perform message recognition as well; however, this is not
discussed in the paper. The setup phase of this protocol
requires that t MAC values be sent over the authenticated
channel. This may be costly since authenticated chan-
nels are usually of low bandwidth. Further, the “cut-and-
choose” procedure in each round involves sending 2t MAC
values and r secret keys. In order for the protocol to be
secure, it is suggested that t ≥ 35 and r ≈ t/2. Hence, the
amount of computation and communication here is large
compared to other protocols that are providing entity or
message recognition and it may not be suitable for settings
with low power devices.

Weimerskirch & Westhoff (2003) introduced the Zero
Common-Knowledge (ZCK) protocol. This protocol is the
starting point of a series of recent publications; see for ex-
ample (Hammell et al. 2005), (Lucks et al. 2005), (Lucks
et al. 2008), (Mashatan & Stinson 2008). They use MACs
and hash chains of the form ai = h(ai−1) and bi = h(bi−1),
i = 1, . . . , n, as keys for the MACs computed by Alice and
Bob, respectively. Here, n is fixed at the beginning and h
is a one-way hash function.

Hammell et al. (2005) implemented the ZCK protocol
and provided measurements and observations as a proof
of concept. They investigated whether the ZCK proto-
col suits devices with low computational power, low code
space, low communication bandwidth, and low energy re-
sources. They concluded that the protocol does meet these

5

Alice Eve Bob

compute gen(1k) = (a, b)
b

====⇒ Receive b.

Initialize α = a. Initialize β = b.

Alice Eve Bob

Input (M , Bob)

(c, α)← compose(M,α)
c−−−−→ Receive c′

(d, β)← decompose(c′, β)
If d = M ′, a valid message,

output (M ′, Alice); otherwise, reject.

Figure 3: A General Stateful Non-interactive Message Recognition Protocol

requirements; however, denial-of-service and memory com-
plexity were identified as areas of concern and needed to
be addressed or improved upon in the future.

Note that Hammell et al. (2005) investigate the practi-
cality of the ZCK protocol but do not investigate its secu-
rity properties. That is, Hammell et al. rely on the security
proof presented by Weimerskirch & Westhoff (2003). How-
ever, Lucks et al. found a flaw in the security proof of this
protocol and presented an attack against the ZCK proto-
col. Moreover, using the same idea of using values in a
hash chain as keys for MACs, they proposed a message
recognition protocol that guards against the found attack.
We describe the protocol proposed by Lucks et al. in more
detail; it has been named the Jane Doe protocol (Lucks
et al. 2008).

Mashatan & Stinson (2008) proposed a message recog-
nition protocol which does not make use of hash chains.
Since this protocol does not use the hash chaining tech-
nique, it no longer requires the small devices to save values
of a hash chain in their memories; this relaxes the mem-
ory requirements and makes the protocol more suitable for
ad hoc networks. However, this is achieved at the cost of
having to send longer messages in each round.

In this paper, we focus of the protocols that make use of
the hash chaining technique, the last of which is the Jane
Doe protocol.

3.1 The Jane Doe Protocol

A one-way hash function H : {0, 1}s → {0, 1}s and a mes-
sage authentication code MAC : {0, 1}s×{0, 1}∗ → {0, 1}c
are the building blocks of this protocol. Typical parame-
ters are suggested to be s ≥ 80 and c ≥ 30. The maximum
number of messages to be authenticated, or the maximum
number of sessions, in the Jane Doe protocol is fixed to
be n. Alice randomly chooses a0 and forms a hash chain
of the form ai = H(ai−1), i = 1, . . . , n. Similarly, Bob
randomly chooses b0 and forms bi = H(bi−1), i = 1, . . . , n.
Alice and Bob will respectively use ai and bi as keys for
MAC values they compute in session i.

The initialization phase is constituted of Alice and Bob
exchanging the values of an and bn. In this phase of the ex-
ecution, Eve is passive and the communication is denoted
by ⇒. Figure 4 illustrates the initialization phase of the

Jane Doe protocol.
There will be n sessions of the protocol and we denote

them in descending order by n−1, . . . , 0; this is because the
values of the hash chains are going to be revealed in this
order. In each session i, Alice would like to authenticate
a message mi. She uses ai as the key for the MAC and
sends the MAC value ofmi to Bob. Bob then authenticates
himself to Alice by revealing bi. Once Alice has verified bi,
she reveals ai. Then ai allows Bob to verify Alice and mi.
Once the session is over, Alice and Bob “move down” in
the hash chain and use ai−1 and bi−1 as keys for session
i− 1.

Lucks et al. write accept-key(k) when a key k has been
accepted, and commit-message(m, i) when Alice commits
herself to authenticate m in session i. Similarly, accept-
message(m, i) indicates that Bob has accepted m as sent
from Alice in session i. The formal description of the Jane
Doe protocol is given next.

Alice’s internal state in the Jane Doe protocol is as fol-
lows:

• i, the session counter
• bi+1, the most recently accepted value of Bob’s hash

chain (hence accept-key(bi+1) has occurred already)
• a one-bit flag, to distinguish the program states A0

and A1.

Similarly, Bob’s internal state is:

• i, the session counter
• ai+1, the most recently accepted value of Alice’s hash

chain (hence accept-key(ai+1) has occurred already)
• a one-bit flag, to distinguish the program states B0

and B1.

Session i of the Jane Doe protocol:

A0 (Alice’s initial program state) Obtain mi (possibly
from Eve), then
Commit-message(mi, i).
Compute di = MACai

(mi).
Send (di,mi); goto A1.

A1 Wait for a message b′ (supposedly from Bob), then
If H(b′) = bi+1 then
Let bi := b′, accept-key(bi) and send ai. Let i := i− 1
and goto A0
else goto A1.

6

Alice Bob

Choose a random a0 and Choose a random b0 and

compute ai = H(ai−1) for i = 1, . . . , n
an====⇒ compute bi = H(bi−1) for i = 1, . . . , n.

bn⇐====

Figure 4: Initialization Phase of the Jane Doe Recognition Protocol

B0 (Bob’s initial program state) Wait for a message
(di,mi), then send bi and goto B1.

B1 Wait for a message a′ (supposedly from Alice), then
If H(a′) = ai+1 then
Let ai := a′ and accept-key(ai).
If MACa′(mi) = di then
Accept mi as authentic in session i
(else do not accept any message for session i).
Let i := i− 1 and goto B0
else goto B1.

Figure 5 depicts the Jane Doe protocol. Lucks et al.
first present the Jane Doe protocol in an extended abstract
(Lucks et al. 2005), prove its security in a longer version
of the paper (Lucks et al. 2008), and finally provided the
full version of the paper (Lucks, Zenner, Weimerskirch &
Westhoff 2009).

The Jane Doe protocol is proved to be secure given that
the preimage resistance, second preimage resistance, and
unforgeability properties, and their hash chain equivalents,
hold. We note that the following is our formulation of
the required properties and not the original formulation
presented in Lucks et al. (2005), (2008), and (2009).

Definition 1 Let secret y0, y1, . . . , yi and known yi+1 be
chosen such that yi+1 = H(yi), yi = H(yi−1), . . . , y1 =
H(y0). A hash function H is referred to as a depth-i
preimage resistant (i-PR) hash function when it is in-
feasible to find y′ such that yi+1 = H(y′).

Definition 2 Let secret y0, y1, . . . , yi−1 and known
yi, yi+1 be chosen such that yi+1 = H(yi),
yi = H(yi−1), . . . , y1 = H(y0). A hash function H
is depth-i second preimage resistant (i-SPR) when
it is infeasible to find y′, y′ 6= yi, such that yi+1 = H(y′).

Definition 3 Let secret y0, y1, . . . , yi and known yi+1 be
chosen such that yi+1 = H(yi), yi = H(yi−1), . . . , y1 =
H(y0). A message authentication code MAC is depth-i
existentially unforgeable if it is infeasible to mount an
existential forgery against MACyi

in an adaptive chosen
message attack scenario.

Although the Jane Doe protocol is provably secure, it
nonetheless falls short in case of a certain adversarial dis-
ruption. In particular, Eve can easily manipulate one party
to move forward to the next session, while the other party
is still in the previous session. In such a case, a party could
get trapped in a state and never be able to finish execution
of a session; as a result, he or she remains stuck in that
state forever.

3.1.1 Unrecoverability Problem of the Jane Doe
Protocol

There is a small time frame associated with each session
i. In particular, a message mi is fresh if it is sent within
the associated time frame of session i. It is assumed that
during each time frame, Alice commits to only one mes-
sage and Bob accepts at most one message. As a result,
the time frame should be known to both Alice and Bob.
However, the value i, which could indicate the appropri-
ate time frame, is contained in the internal states of Alice
and Bob. Note that i is not being transmitted during the
protocol execution and it is implicit that Alice’s and Bob’s
internal states agree on this value. This may be problem-
atic in different ways. First, how will Alice and Bob remain
synchronized during the different time frames? Assuming
a secure synchronized clock is a quick fix to this problem.
However, assuming availability of such a service may not be
practical for most ad hoc network scenarios. In particular,
Lucks et al. assume that no securely synchronized clock is
available. Hence, the process of synchronization is highly
dependent on the schedule of received and sent messages,
that is, on the dynamics of the communication in the net-
work. This gives rise to the second problem: in case of
communication failure or adversarial disruption, this pro-
tocol is not equipped with a practical resynchronization
process.

We observe that although the Jane Doe protocol is prov-
ably secure, it nonetheless falls short in case of the follow-
ing adversarial disruption. Eve can easily manipulate one
party to move forward to the next session, while the other
party is still in the previous session. In such a case, a party
could get trapped in a state and never be able to finish ex-
ecution of a session; as a result, he or she remains stuck
in that state forever. It is also mentioned in Lucks et al.
(2008) that Eve is able to stretch a session at her will.

Figure 6 illustrates a situation where Bob is trapped by
Eve in program state B1. The condition in program state
B1 fails since ai+1 6= H(a′i). This will cause Bob to stay
in B1 waiting for a new ai. Now even if Alice sends him
a legitimate message mi, he will ignore it. Although this
looks like a denial of service attack, it is much stronger
than that. Eve can go away and yet Alice and Bob are
still unable to communicate because Bob is trapped. The
details of the disruption are as follows.

Eve sends m′i and d′i to Bob and he will automatically
decrement his index to i while Alice does not. Eve chooses
a′i such that ai+1 6= H(a′i), which will make Bob wait for a
new ai. While he is waiting for a new ai, he will not accept

7

Alice Bob

Input (mi, Bob)
commit-message(mi, i)

di = MACai
(mi)

mi, di−−−−→ Receive m′i, d
′
i

bi←−−−−

Receive b′i and
If bi+1 = H(b′i)
then accept-key(b′i)

else wait for a new bi
ai−−−−→ Receive a′i

If ai+1 = H(a′i)
then accept-key(a′i)
else wait for a new ai.
For an accepted a′i check if d′i = MACa′

i
(m′i).

If so, accept-message(m′i, i).

Figure 5: The Jane Doe Entity and Message Recognition Protocol

a message of the form (mj , dj), for any j. Hence, even if
Alice sends him a legitimate message, he will ignore it. As
a result, he is “trapped” in state B1.

Lucks et al. (2008) suggest that Bob sends bi again after
he has waited for too long to receive the correct ai. How-
ever, when Alice has not initiated the session and is not
anticipating bi, it is not clear what she is supposed to do.
Hence, this will not help the protocol recover in case of
this particular disruption.

Eve can play the same trick with Alice and trap her
in program state A1 for an indeterminate period of time;
Figure 7 illustrates this situation.

Once again, we note that this inability to recover is a
problem since the adversary does not need to continue
her active involvement. She can leave the network and
yet Alice and Bob will no longer be able to have success-
ful communication. This renders the protocol unusable in
practice.

There should be a mechanism to help Alice and Bob
resynchronize after having waited for a sufficiently long
period of time for a new ai or bi. Otherwise, the pro-
tocol cannot be resumed and recoverability is lost. One
way to perform this resynchronization is to utilize the au-
thenticated channel occasionally. The advantage of this
solution is that it is very simple. However, the authenti-
cated channel is expensive and it may not be practical to
assume that it is accessible after the initialization phase.
For instance, the devices may be widely dispersed, and
it may not be possible to collect them again to perform
this kind of resynchronization. Furthermore, periodic em-
ployment of the resynchronization process, according to a
predefined schedule, will not be based on the dynamics
of the network. For instance, some devices may be more
active than others or there may be more noise present in
some parts of the network compared to other parts of the
network. Indeed, there is more disruption caused by noise
or communication failure in busier parts of the network.
Hence, resynchronization among some users may be nec-
essary more often than others. As a result, it is desirable
to execute the resynchronization process when it is needed
according to the state of the network. We propose the fol-

lowing protocol to overcome these shortcomings. We use
the same hash function, H, used by Lucks et al. and write
Hj , j ≥ 1, to denote the case when the hash function H
is applied j times iteratively.

4 An Improved MRP with Resynchronization Process

In this section, we present our first improvement on the
Jane Doe protocol.

The internal state of Alice and Bob includes:

• iA (held by Alice) and iB (held by Bob), counters
pointing to the position of Alice and Bob in their re-
spective hash chains,

• iacceptA, a counter kept by Alice which is the smallest
index such that Alice has accepted the key biacceptA

in session iacceptA. Similarly, iacceptB , a counter kept
by Bob which is the smallest index such that Bob has
accepted the key aiacceptB

in session iacceptB .

Alice executes the protocol as follows:

• Let i := iA and jA := iacceptA − iA;
• Wait for mi (possibly from Eve), then
• commit-message(mi, i);
• compute di = MACai(i‖mi);
• send (i‖mi, di);
• wait for a message b′i (supposedly from Bob), then

if HjA(b′i) = biacceptA
, (key verification step)

then bi := b′i; accept-key(bi); send ai; set iacceptA := i
and iA = i− 1;
else initiate the resynchronization process.

Bob executes the protocol as follows:

• Let jB := iacceptB − iB ;
• Wait for a message (i′‖m′i′ , di′).
• If i′ = iB , then send bi′ , else initiate the resynchro-

nization process.

8

Eve Bob

Choose random m′i and d′i.
m′i, d

′
i−−−−→ Move to the next time-frame upon reception of

the new message.
bi←−−−−

Choose a′i such that ai+1 6= H(a′i).
a′i−−−−→ Since ai+1 6= H(a′i), wait for a new ai.

Figure 6: Eve “trapping” Bob in state B1

Alice Eve

Input (mi, Bob).
commit-message(mi, i).

Compute di = MACai
(mi).

mi, di−−−−→

Since bi+1 6= H(b′i), wait for a new bi.
b′i←−−−− Choose b′i such that bi+1 6= H(b′i).

Figure 7: Eve “trapping” Alice in state A1

• Wait for a message a′i′ (supposedly from Alice), then
if HjB (a′i′) = aiacceptB

, (key verification step)
then ai′ := a′i′ ; accept-key(ai′); set iacceptB := i′ and
iB := i′ − 1
if MACai′ (i

′‖m′i′) = di′

then accept m′i′ as authentic in session i′;

else initiate the resynchronization process.

Figure 8 illustrates this protocol. Let us first highlight
the differences between this protocol and the Jane Doe
protocol of Lucks et al. In the internal states of Alice and
Bob, the session counter i is replaced by iA and iB to in-
corporate the adversarial ability to manipulate a party to
decrement the session counter, as was discussed previously,
and consequently change its position in the hash chain. For
the same reason, i + 1 is changed to iacceptA and iacceptB
as the smallest index such that a key has been accepted
by Alice or Bob, respectively. Moreover, ai+1 and bi+1

are replaced by aiacceptB
and biacceptA

as the accepted keys.
Further, parameters jA and jB are introduced to deal with
the case where iacceptA > iA+1 or iacceptB > iB+1, respec-
tively, due to an adversary’s intrusions. A related modifi-
cation refers to the key verification step, where the users
may need to apply the hash function H more than once.
In the Jane Doe protocol, the session counter is not being
transmitted or committed to by either party. However, we
require that Alice commits to iA and transmits it in the
first flow. This allows Bob to easily detect any possible
manipulations of the session counter by Eve. Furthermore,
we provide a resynchronization process, allowing Alice and
Bob to initiate the resynchronization process when they do
not receive the correct keys. Hence, the adversary can no
longer “trap” them in states A1 or B1, as was explained
previously.

Surely, it holds that iA = iB when the adversary has
been passive since the initialization. Moreover, in the
case where all flows are safely relayed from the initializa-
tion, Alice and Bob will accept every single key from the
other party and move forward in the hash chain together.

Hence, in the ith session, iA = iB = i and iacceptA =
iacceptB = i + 1. In particular, jA = iacceptA − iA = 1
and jB = iacceptB − iB = 1. However, once the adversary
begins sending messages to Alice and Bob, she is capa-
ble of manipulating either party to decrement their ses-
sion counter in a bogus session. Hence, Alice and Bob
will need to resynchronize to agree on a mutual position in
their respective hash chains, which may result in jA 6= 1
or jB 6= 1.

Note that this variant is instructing Alice and Bob to
initiate resynchronization whenever a mismatch occurs.
Hence, once the adversary initiates a bogus session, she
can no longer continue another bogus session undetected.
That is, she can make Alice and Bob decrement their ses-
sion counters at most once. Hence, we have |iA − iB | ≤ 1.
In case of an active intrusion, the participants are not sup-
posed to accept the key Eve sends them and, as a result,
the values of iacceptA and iacceptB are not going to be up-
dated. Consequently, we obtain jA = iacceptA − iA = 2 or
jB = iacceptB − iB = 2.

In this protocol, the session counter is being transmitted
in the first flow. Moreover, Alice commits to this value as
part of the message, so the adversary cannot arbitrarily
change it without being detected. This implies that the
security proof of the Lucks et al. protocol will apply to
this new variant as well. Furthermore, once either user
realizes that Eve could have manipulated the values, they
can initiate a resynchronization process. This process al-
lows them to agree on a session counter iA = iB , which
indicates the corresponding position of each user in their
respective hash chains.

4.1 Resynchronization Process

At some point during the execution of the protocol, either
Alice or Bob realizes the need for resynchronizing with
the other party. This may be due to a mismatch caused
by adversarial efforts or just due to some communication
failure or noise. In the resynchronization process, Alice

9

Alice Bob
Internal-state= iA and iacceptA Internal-state= iB and iacceptB

Let i := iA and jA := iacceptA − iA Let jB := iacceptB − iB ;
Receive input (mi, Bob) and
commit-message(mi, i)

di = MACai
(i‖mi)

i,mi, di−−−−−→ Receive i′,m′
i′ , d

′
i′

If i′ = iB , then send bi′ ,
bi′←−−−−− else initiate resynchronization.

Receive b′i and

If biacceptA
= HjA (b′i), then

accept-key(b′i),

send ai, and
ai−−−−−→ Receive a′

i′

let iacceptA := i and iA = i− 1; If HjB (a′
i′) = aiacceptB

, then

else initiate resynchronization accept-key(a′
i′) and,

let iacceptB := i′ and iB := i′ − 1
else initiate resynchronization.
For an accepted a′

i′
check if d′

i′ = MACa′
i′

(i′‖m′
i′).

If so, accept-message(m′
i′ , i
′).

Figure 8: Our Proposed Variant of the Jane Doe Protocol

computes

IA := min{i : Alice has revealed ai} − 1

and, similarly,

IB := min{i : Bob has revealed bi} − 1

is computed by Bob. Then, they exchange IA and IB over
the insecure channel. Note that, Eve can change these
values, say to I ′A and I ′B , since they are being sent over
the insecure channel.

Recall that we are instructing Alice and Bob to resyn-
chronize whenever they notice a mismatch. This implies
that the adversary, or some noise in the channel, can make
them increment their session counters at most once be-
fore they try to resynchronize again. Hence, we have
|IA − IB | ≤ 1. This fact alone does not enable Alice and
Bob to detect Eve’s manipulation with IA and IB . How-
ever, it makes it impossible for Eve to choose values for
I ′A and I ′B which are smaller than IA − 1 and IB − 1, re-
spectively. We emphasize that this feature is important
here. In the absence of such a feature, Eve can choose I ′A
and I ′B to be very small and exhaust the hash chains too
quickly. That would constitute a strong denial of service
attack that can be prevented as follows.

Alice checks to make sure |IA − I ′B | ≤ 1 and Bob checks
to see if |I ′A − IB | ≤ 1 holds. If either of these do not
hold, it means that the adversary is attempting to intrude
while they are trying to resynchronize. If |IA − I ′B | ≤ 1
and |I ′A − IB | ≤ 1 hold, then Alice and Bob will let iA :=
min(IA, I ′B) and iB := min(I ′A, IB), respectively. Figure 9
depicts the resynchronization process.

Note that an active adversary can always disrupt the
synchronization. When one party realizes this, he or she
will call for a resynchronization again. If the adversary is
passive in the resynchronization stage, then IA = I ′A and
IB = I ′B . As a result, iA = iB and synchronization is
achieved.

However, we will show that intrusions of an active ad-
versary during the resynchronization stage, resulting in
iA 6= iB , are going to be detected by either Alice or Bob. In
case of intrusions where |IA− I ′B | > 1 or |I ′A− IB | > 1, the
adversary is detected right away as discussed above. The
rest of the intrusions are detected in the first session of
the protocol immediately after the resynchronization, de-
picted in Fig 10. We show that the adversary is detected
unless she has found unrevealed preimages of particular
values in the hash chain. Note that iA and iB cannot dif-
fer very much, due to the conditions |IA − I ′B | ≤ 1 and
|I ′A − IB | ≤ 1. However, we can prove the same statement
even if the difference between iA and iB is not bounded.

In order for Eve not to be detected by Bob in the key
verification step, she must replace aiA with aiB . Oth-
erwise, Bob will not accept the key and he will initiate
resynchronization regardless of the values of miB and diB .
Similarly, she has to replace biB with biA , otherwise, she
will be detected by Alice. Now, assume that iA < iB af-
ter the resynchronization. Finding a correct value for biA
means that Eve has found a nonempty chain of preimages
(biB , biB−1, . . . , biA+1). Similarly, if iA > iB and the adver-
sary goes undetected, she has found a chain of preimages
(aiA , aiA−1, . . . , aiB+1). Hence, as long as finding preim-
ages of H is a hard task, the adversary will be detected
with high probability. As a result, we obtain the following
theorem.

Theorem 2 Let H be a depth-i second preimage resistant
and depth-i preimage resistant hash function in the pro-
tocol of Figure 8. Consider a polynomially bounded ad-
versary who changes the values of IA or IB in the resyn-
chronization process of Figure 9, resulting in iA 6= iB. An
undetected such intrusion can only occur with a negligible
probability.

As a small efficiency improvement, we note that it is not
necessary for Alice to store both iA and iacceptA. It would
suffice to store iA and jA, because iacceptA = iA+jA. Since

10

Alice Bob

Find Find
IA := min{i : Alice has revealed ai} − 1 IB := min{i : Bob has revealed bi} − 1

IA−−−−−→ Receive I′A

Receive I′B
IB←−−−−−

If |IA − I′B | ≤ 1, If |I′A − IB | ≤ 1,
then let iA := min(IA, I

′
B) then let iB := min(I′A, IB)

else initiate resynchronization. else initiate resynchronization.

Figure 9: Resynchronization Process for the Proposed Protocol

Alice Eve Bob

Internal-state= iA Internal-state= iB
commit-message(miA

, iA)
iA,miA

, diA−−−−−→
iB ,miB

, diB−−−−−→

Key verification step
biA←−−−−−

biB←−−−−− Send biB

Send aiA

aiA−−−−−→
aiB−−−−−→ Key verification step

Figure 10: The First Execution after the Resynchronization

jA = 1 or 2, this reduces the amount of information that
Alice needs to store. A similar remark holds for Bob.

Although the improved version of the protocol along
with the resynchronization protocol fully recovers from
these noted disruptions, it is of interest to design a pro-
tocol that recovers on its own, without having to call upon
an external protocol. That is, a protocol that attains self-
recoverability is usually preferred to a protocol that de-
pends on a second protocol when trying to recover.

In the next section, we propose a message recognition
protocol which attains self-recoverability in case of the
noted disruptions. It is in fact a highly nontrivial task to
modify the protocol to achieve self-recoverability. Because
the entities may be in additional “states”, depending on
the information they possess and its authenticity, the pro-
tocol is necessarily more complicated. As a consequence,
the security proof is more difficult.

5 A New MRP with Self-recoverability

We describe the details of our proposed MRP in this sec-
tion, while the security and recoverability analyses are
postponed to the next session. Although this protocol is
based on the Jane Doe protocol proposed by Lucks et al.,
the logic of the instructions of Alice and Bob has changed
considerably. Moreover, the information exchanged be-
tween Alice and Bob has changed as well.

Note that each pair of users can execute this new proto-
col. However, as in the Jane Doe protocol, there must be
a different pair of hash chains for each pair of communi-
cating users. It is implicitly assumed that Alice and Bob
are the communicating parties in the rest of the paper.

The initialization phase and the setup of the hash chains
are exactly as in the Jane Doe protocol. The internal state
of Alice includes (along with each variable’s initial value):

• iA := n− 1: the position of Alice in her chain.
• iacceptA := n: the last index of Bob’s chain that was

accepted by Alice.
• bA := bn: the last value of Bob’s chain that was ac-

cepted by Alice.
• M := Null: the input message to be authenticated in

the current session.
• a one-bit flag, to distinguish the program states A0

and A1.

Similarly, Bob’s internal state is as follows:

• iB := n− 1: the position of Bob in his chain.
• iacceptB := n: the last index of Alice’s chain that was

accepted by Bob.
• aB := an: the last value of Alice’s chain that was

accepted by Bob.
• e′ := Null: the MAC value supposedly received from

Alice.
• M ′ := Null: the message supposedly received from

Alice.
• a one-trit flag, to distinguish the program states B0,

B1, and B2.

Alice and Bob start in program states A0 and B0.
We write commit-message(M, iA) to indicate that Alice

is committing herself to sending the message M to Bob
in session iA. We let T be the maximum amount of time
Alice waits to receive a response from Bob, and vice versa.

A0 is executed as follows:

If iA ≤ 0 then Abort.

Receive input (M) and commit-message(M, iA).

Compute eiA := MACaiA
(iA‖M).

Send [eiA ,M] to Bob and goto A1.

11

B0 is executed as follows:

If iB ≤ 0 then Abort.

Wait to receive [e′,M ′], then goto B1.

B1 has the following description:

Send [iB , biB] to Alice and goto B2.

A1 is performed in the following manner:

Wait at most time T to receive [i′B , b
′].

If [i′B , b
′] is received, then

If i′B = iacceptA and bA = b′ (Bob has not re-
ceived the last flow of the previous session) then

Let N := Null.
Send [iacceptA, aiacceptA

, N] and goto A0.

If i′B = iA and bA = H(b′) then (Alice and Bob
seem to be synchronized.)

Let N := M .
Send [iA, aiA , N] to Bob.
Let iacceptA := i′B , bA := b′ and iA := iA−1.
(Alice updates her state.)
goto A0.

else Resend [eiA ,M] to Bob and goto A1.

If timeout then

Resend [eiA ,M] to Bob and goto A1.

B2 is performed as follows:

Wait at most time T to receive [i′A, a
′, N ′].

If [i′A, a
′, N ′] is received, then

If i′A = iB and aB = H(a′) then (Alice and Bob
seem to be synchronized.)

If N ′ = M ′ and e′ = MACa′(i′A‖M ′) then
Accept(M ′, iB).

else Accept(Null).
Let iacceptB := i′A, aB := a′ and iB := iB−1.
(Bob updates his state.)
goto B0.

else goto B1.

If timeout, then goto B1.

Figure 11 illustrates the main steps of this protocol. For
simplicity, the instructions on what to do in case one party
does not receive any response from the other party is not
included in the figure.

If either Alice or Bob receives a message that they did
not expect, they are going to ignore it. For instance, while
Alice is in state A1 and is waiting to receive a message
of the form (iB , b), she is going to ignore messages of the
form (M ′) that request for a new session and correspond

to state A0. Analogously, when Bob is in state B2, he
is waiting for a message of type iA, a,N . He is going to
ignore messages of the form e′iA ,M

′ since they correspond
to state B0. In general, each party only acts on received
messages that have the expected structure in accordance
to their current program state.

When Alice is waiting in state A1 for Bob to respond,
she is set to wait for time T . If she receives a message i′B , b

′

in time T , then she processed it in state A1, and otherwise,
she resends eiA ,M to Bob. Similarly, Bob waits to receive
a message i′A, a

′, N ′, supposedly from Alice, for time T .
If he does not receive such a message, he resends iB , b to
Alice.

Note that Eve can block the last flow of Alice, iA, a,N .
In this case, Alice has decremented her state, while Bob is
waiting to receive iA, a,N , and possibly resending iB , biB
to remind Alice to send him iA, a,N . However, since Alice
has moved her state to A0, she will ignore Bob’s messages.
This may appear to be problematic since Bob is waiting for
Alice. However, once Alice is ready to authenticate a new
message to Bob, she will be in program state A1 again,
and communication will resume.

6 Security of Our New MRP with Self-recoverability

In this section, we consider different types of possible at-
tacks against our protocol. Finally, we conclude with a
theorem which ensures the security of our protocol.

6.1 Single-session Attacks

In this section, we consider attacks that are started and
completed in a single session. We assume that Eve has
stayed passive all along and she becomes active in the cur-
rent session for the first time. In case of a successful at-
tack, Bob will accept some message M ′ in the same session,
where M ′ is not Null and not the message sent by Alice
in that session. Since Eve has been passive before this ses-
sion, we will have iA = iB at the start of the session; we let
i := iA = iB for ease of reference. For the same reason, we
have iacceptA = iacceptB = i + 1. Furthermore, Alice and
Bob will have accepted all the intended keys so far. That
is, aB = ai+1 and bA = bi+1.

We now want to exhaustively list all possible single-
session attacks. We follow the notation of Gehrmann
(1998) in referring to different orderings of the flows. In
each attack, the adversary sends a flow to either Alice or
Bob and receives a flow in response. This notation labels
a flow by A if the recipient is Alice, or by B when the re-
cipient is Bob. For instance, the following attack scenario
corresponds to the attack type of ABAB:

• A: Eve sends M to Alice and she responds with
eiA ,M .

• B: Eve sends e′,M ′ to Bob and he replies with iB , biB .

12

Alice Bob
Internal state: iA, iacceptA, bA, M Internal state: iB , iacceptB , aB , e′, M ′

A0: B0:
If iA ≤ 0 then Abort. If iB ≤ 0 then Abort.
Receive (M) and commit-message(M, iA).
Compute eiA

:= MACaiA
(iA‖M).

Send [eiA
,M].

eiA
,M

−−−−−−→ Receive [e′,M ′].

A1: B1:

Receive [i′B , b
′].

iB , biB←−−−−−− Send [iB , biB
].

If i′B = iacceptA and bA = b′ then
Let N := Null.
Send [iacceptA, aiacceptA

, N] and goto A0.

If i′B = iA and bA = H(b′) then
Let N := M . B2:

Send [iA, aiA
, N].

iA, aiA
, N

−−−−−−→ Receive [i′A, a
′, N ′].

Let iacceptA := i′B , bA := b′, iA := iA − 1. If i′A = iB and aB = H(a′) then
goto A0. If N ′ = M ′ and e′ = MACa′ (i

′
A‖M

′) then
else Resend [eiA

,M] and goto A1. Accept(M ′, iB).
else Accept(Null).
Let iacceptB := i′A, aB := a′, iB := iB − 1.
goto B0.

else goto B1.

Figure 11: Our Proposed Message Recognition Protocol (Common Case)

• A: Eve sends i′B , b
′ to Alice and receives iA, aiA , N

from her.

• B: Eve sends i′A, a
′, N ′ to Bob.

The number of distinct attacks against a three flow
protocol is proved to be

(
4
2

)
= 6 in Gehrmann (1998).

These attacks are denoted AABB, ABBA, BABA, ABAB,
BBAA, and BAAB. We will look at these different at-
tacks separately. We stress that Gehrmann (1998) formally
proves this list to be an exhaustive list of all possible types
of attacks.

One can show that the BABA attack scenario can be
reduced to the ABBA attack. That is, if an adversary Os-
car can mount a successful attack of type BABA, then Eve
can use Oscar and succeed in the ABBA attack scenario.
Similarly, we can show that the BAAB and ABBA attack
scenarios are reduced to the ABAB case. It remains to
analyze the other three attack scenarios, namely AABB,
BBAA, and ABAB. We will reduce a successful adversary
in these attacks to a player who can mount a depth-i ex-
istential forgery or can find depth-i preimages or depth-i
second preimages.

6.1.1 Attack of Type AABB

Figure 12 depicts an attack of type AABB.
If i′A 6= iB , Bob will not accept any messages. Since

iA = iB = i, Eve has to set i′A := iA in order to succeed.
Moreover, Alice reveals iA and aiA only if b′ is verified;
that is, if bA = H(b′) (note that bA = bi+1, as discussed
before).

Eve first interacts with Alice and has to find b′ before
seeing biB = bi. This implies that she has found a preimage

Alice Eve Bob

M←−−−−−−−−−− A

eiA
,M

−−−−−−−−−−→

i′B , b
′

←−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−→

B
e′,M ′

−−−−−−−−−−→

iB , biB←−−−−−−−−−−

B
i′A, a

′, N ′
−−−−−−−−−−→

Figure 12: Attack of Type AABB

of bA = bi+1. This exactly translates to the notion of i-PR
defined in Def. 1.

6.1.2 Attack of Type BBAA

Figure 13 illustrates the attack of type BBAA.

Alice tries to deceive Bob before she starts interacting
with Alice. In order to succeed, Eve needs to present Bob
with an a′ such that aB = H(a′), without having seen
aiA = ai (note that aB = ai+1, as discussed before). In
other words, she is trying to find a preimage of aB = ai+1.
If Eve can successfully find such a preimage, the she trans-
lates to a successful player who finds depth-i preimages, as
defined in Def. 1.

13

Alice Eve Bob

B
e′,M ′

−−−−−−−−−−→

iB , biB←−−−−−−−−−−

B
i′A, a

′, N ′
−−−−−−−−−−→

M←−−−−−−−−−− A

eiA
,M

−−−−−−−−−−→

i′B , b
′

←−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−→

Figure 13: Attack of Type BBAA

6.1.3 Attack of Type ABAB

Depicted in Fig. 14 is the ABAB attack.

Alice Eve Bob

M←−−−−−−−−−− A

eiA
,M

−−−−−−−−−−→

B
e′,M ′

−−−−−−−−−−→

iB , biB←−−−−−−−−−−

i′B , b
′

←−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−→

B
i′A, a

′, N ′
−−−−−−−−−−→

Figure 14: Attack of Type ABAB

In this scenario, Eve receives biB = bi before she has to
send b′ to Alice. We analyze the two cases b′ = bi and
b′ 6= bi separately.

If b′ 6= bi, then it implies that Eve has found a depth-i
second preimage of bA = bi+1.

Otherwise, b′ = bi. Alice will verify b′ = bi and reveal
aiA = ai. Eve now has two choices. She chooses a′ such
that either a′ = aiA or a′ 6= aiA . If a′ 6= aiA , then she
has found a depth-i second preimage of ai+1 = aB . On
other hand, if a′ = aiA , then for Eve to succeed, she must
set N ′ := M ′ and she must have set e′ := MACa′(i′A‖M ′)
before learning a′. That is, Eve has successfully forged a
MAC. This reduces to the notion of depth-i existential
forgery defined in Def. 3.

6.1.4 Reducing the BABA attack to an ABBA
attack

The ABBA attack scenario, depicted in Fig. 15, is as fol-
lows:

• A: Oscar sends M to Alice and receives eiA ,M from
her.

• B: Oscar sends e′,M ′ to Bob and he sends iB , biB .
• B: Oscar sends i′A, a

′, N ′ to Bob.
• A: Oscar sends i′B , b

′ to Alice and she replies with
iA, aiA , N .

Alice Oscar Bob

M←−−−−−−−−−− A

eiA
,M

−−−−−−−−−−→

B
e′,M ′

−−−−−−−−−−→

iB , biB←−−−−−−−−−−

B
i′A, a

′, N ′
−−−−−−−−−−→

i′B , b
′

←−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−→

Figure 15: Attack of Type ABBA

On the other hand, the BABA attack scenario, illus-
trated in Fig. 16, is as follows:

• B: Oscar sends e′,M ′ to Bob and he sends iB , biB .
• A: Oscar sends M to Alice and receives eiA ,M from

her.
• B: Oscar sends i′A, a

′, N ′ to Bob.
• A: Oscar sends i′B , b

′ to Alice and she replies with
iA, aiA , N .

Alice Oscar Bob

B
e′,M ′

−−−−−−−−−−→

iB , biB←−−−−−−−−−−

M←−−−−−−−−−− A

eiA
,M

−−−−−−−−−−→

B
i′A, a

′, N ′
−−−−−−−−−−→

i′B , b
′

←−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−→

Figure 16: Attack of Type BABA

These two attack scenarios differ in the order of the first
two steps and are identical otherwise. In the BABA attack
scenario, Oscar commits to e′ and M ′ before receiving eiA .
Note that knowing eiA could possibly help him in choosing
e′. On the other hand, Oscar receives iB and biB before
sending M . The adversary knows the value of iB . More-
over, the choice of M is independent of the value of biB . In

14

other words, knowing biB is not going to help the adver-
sary in choosing M . Hence, if Oscar can win in the BABA
attack scenario by first committing to e′ and M ′ and then
receiving eiA , then he can win the ABBA attack scenario
with the same values M,M ′, and e.

6.1.5 Reducing the ABBA attack to an ABAB
attack

Recall the ABAB attack scenario:

• A: Oscar sends M to Alice and receives eiA ,M from
her.

• B: Oscar sends e′,M ′ to Bob and he sends iB , biB .
• A: Oscar sends i′B , b

′ to Alice and she replies with
iA, aiA , N .

• B: Oscar sends i′A, a
′, N ′ to Bob.

The ABBA attack differs from the ABAB attack in the
order of the last two steps. In the ABAB attack, Oscar
receives iA, aiA , N from Alice, and then he has to send
i′A, a

′, N ′ to Bob. Knowing iA, aiA , N can help him choose
a winning i′A, a

′, N ′, whereas in the ABBA attack scenario,
Oscar sends i′A, a

′, N ′ before seeing iA, aiA , N . If Oscar
has a winning strategy in the ABBA attack scenario, then
using the same values of i′A, a

′, N ′, he will win the ABAB
attack scenario.

6.1.6 Reducing the BAAB attack to an ABAB
attack

The BAAB attack scenario is as follows:

• B: Oscar sends e′,M ′ to Bob and he sends iB , biB .
• A: Oscar sends M to Alice and receives eiA ,M from

her.
• A: Oscar sends i′B , b

′ to Alice and she replies with
iA, aiA , N .

• B: Oscar sends i′A, a
′, N ′ to Bob.

Figure 17 depicts this attack.

Alice Oscar Bob

B
e′,M ′

−−−−−−−−−−→

iB , biB←−−−−−−−−−−

M←−−−−−−−−−− A

eiA
,M

−−−−−−−−−−→

i′B , b
′

←−−−−−−−−−− A

iA, aiA
, N

−−−−−−−−−−→

B
i′A, a

′, N ′
−−−−−−−−−−→

Figure 17: Attack of Type BAAB

The analysis of this case is analogous to that of Sec-
tion 6.1.4. The BAAB attack scenario differs from the
ABAB attack scenario in the order of the first two steps.
In the BAAB attack scenario, Oscar has to commit to e′

and M ′ before seeing eiA . Although Oscar receives iB and
biB before sending M , these values are independent of the
choice of M . That is, seeing biB is not going to help the
adversary in choosing M . Hence, a winning strategy in
the BAAB attack scenario reduces to a winning strategy
in the ABAB attack scenario.

6.2 Multi-session Attacks

Having ruled out the possibility of single-session attacks,
we now turn our attention to multi-session attacks. Con-
sider attack scenarios which occur over two or more ses-
sions. In such a case, the adversary becomes active in one
session and concludes her attack in one of the following
sessions. In case of a successful attack, Bob will accept M ′

in the last session of the attack, where M ′ is not Null and
not the message sent by Alice in that session.

Just before Eve becomes active, similar to the single-
session attack scenario discussed above, we must have iA =
iB and iacceptA = iacceptB = iA + 1. We again let i :=
iA = iB for ease of reference. Moreover, all of the intended
keys will have been accepted to this point, so as a result,
aB = ai+1 and bA = bi+1.

We now assume that during session i, Eve becomes ac-
tive by initiating a flow with either Alice or Bob, or chang-
ing the information sent by them. Since we are considering
multi-session attacks, the attack should not entirely take
place in one session. As a result, Eve is not making Bob ac-
cept her message M ′ immediately after she becomes active.
The following three cases can happen once Eve becomes
active:

Case 1. Bob is not engaged right away. That is, Eve first
interacts with Alice.

Case 2. Bob is engaged right away and he outputs the
message M , sent by Alice.

Case 3. Bob is engaged right away and he outputs Null.

We discuss each case separately.

Case 1. Let us assume that Eve first interacts with Al-
ice and does not engage Bob. In order for Alice to
conclude her session, she must receive i′B , b

′ such that
i′B = i and bi+1 = H(b′). Otherwise, Alice will detect
that something is going on, hence, she will not reveal
i, ai and, instead, will resend ei,M . If Eve wants to
remain undetected and be able to continue with her
attack, she needs to send i′B , b

′ such that i′B = i and
bi+1 = H(b′). This means that Eve has found a depth-
i preimage of bi+1.

Case 2. Now assume that Bob is engaged and he outputs
the message M , sent by Alice. That is, on input (M),
Alice has sent ei,M to Bob. Since Bob accepts M at
the end, it means that he, indeed, has received M in

15

the first flow. Moreover, for Bob to accept M , he must
receive i′A, a

′, N ′ such that i′A = i, ai+1 = H(a′), and
N ′ = M . There are three different cases to consider
here.

• Not having received i, ai,M from Alice, Eve finds
i′A, a

′, N ′ such that i′A = i and ai+1 = H(a′).
That is, she finds a depth-i preimage of ai+1.

• Having received i, ai,M from Alice, Eve finds
i′A, a

′, N ′ such that i′A = i, ai+1 = H(a′), and
ai 6= a′. That is, she finds a depth-i second
preimage of ai+1.

• Eve sets i′A, a
′, N ′ = i, ai,M . That is, Eve relays

Alice’s last flow. Note that Alice reveals her last
flow only if she receives i′B , b

′ such that i′B = i
and bi+1 = H(b′). There are again three cases
to consider here. Either Eve has found a depth-i
preimage of bi+1, she has found a depth-i second
preimage of bi+1, or she has relayed i, b faithfully.
In the latter case, Eve has faithfully relayed all
messages, and this does not constitute an attack
by an active adversary. This contradicts our as-
sumption that Eve first becomes active in session
i.

Case 3. Bob is engaged right away and he outputs Null.
This means that he has received and verified i′A and
a′. There are again three cases to consider. Either Eve
has found a depth-i preimage of ai+1, or she has found
a depth-i second preimage of ai+1, or i′A and a′ are the
correct i, ai as revealed by Alice. In this last case, Al-
ice and Bob have successfully remained synchronized,
but were unable to authenticate the messages they in-
tended to authenticate.

The above discussion concludes that in the session imme-
diately after Eve becomes active, she can only stop Alice
and Bob from authenticating the intended message, but
she cannot bring them out of their synchronized states un-
less she is able to solve the depth-i PR or depth-i SPR
problems defined in Definitions 1 and 2. Moreover, if Alice
and Bob are synchronized at the beginning of a session,
then they will end the session in a synchronized state, un-
less Eve is able to find depth-i preimages or depth-i second
preimages.

At the beginning of a multi-session attack, Alice and
Bob are synchronized. The above discussion implies that
they remain synchronized until the very last session of the
attack. We can look at this last session of the attack sepa-
rately and think of it as a single-session attack. As a result,
any multi-session attack translates to a single-session at-
tack, which were already ruled out in Section 6.1.

Note that the adversary can only exhaust Alice’s and
Bob’s values of the hash chain one at a time. That is, she
can not make them jump more than one step down the
hash chain values.

6.3 Self-recoverability

In this section, we show that once Eve stops interfering
with their message flows, Alice and Bob will be able to
resume successful communication of recognized messages.
Because we have already shown that Alice and Bob remain
synchronized in their i values throughout an active attack
by Eve (under the security assumptions on H and MAC),
we need only show that they do not get “trapped” in a
program state, as was the case in the Jane Doe protocol,
for example.

We consider the possible combinations of program states
which Alice and Bob are in when Eve becomes passive. We
first consider the case where Alice is in state A1.

• If Alice is in A1 and Bob is in B0, then after time
T , Alice will resend [eiA ,M] to Bob, which will cause
him to leave state B0, and the protocol will continue.

• If Alice is in A1 and Bob is in B1, then Bob will send
[iB , biB] to Alice and advance to B2, which will cause
her to send an appropriate message to Bob, and herself
return to A0. Bob will return to B0, though he may
Accept(Null) if Eve forged the M ′ which caused Bob
to enter the B1 state. This can of course only affect
the first Accept after Eve’s interference, however.

• If Alice is in A1 and Bob is in B2, then Alice will
be resending useless messages to Bob, and staying in
A1, but after time T , Bob will return to B1, and we
proceed as above.

If Alice is in A0, then no progress will be made until
the next time she tries to send a message to Bob. At that
point, Alice will enter state A1, and the analysis continues
as above.

6.4 Security and Self-recoverability Theorem

The above discussion concludes the discussion of the
security and self-recoverability of the proposed message
recognition protocol, and forms the proof of the following
theorem.

Theorem 3 A successful adversary against the protocol
of Section 5 who efficiently deceives Bob into accepting
(M ′,i), where M ′ is not Null and Alice did not send M ′ in
session i, implies an efficient algorithm that finds depth-i
preimages or depth-i second preimages, or creates depth-i
existential forgeries. Moreover, the adversary cannot stop
Alice and Bob from successfully executing the protocol un-
less she is actively disrupting the communication for the
lifetime of Alice and Bob.

7 Explicit Confirmation

In this section, we propose a new protocol that provides
explicit confirmation. To our knowledge, this is the first

16

time the notion of explicit confirmation is presented in the
context of message recognition protocols.

Existing MRPs allow Alice to send a message to Bob
and hope that he will accept this message as sent from
Alice. By just following the MRP instructions, Alice does
not have any means to know for sure wether or not Bob
has accepted her message. Explicit confirmation provides
such an assurance to Alice and, so far, it has not been
considered in the context of MRPs.

In this context, we consider the usual adversarial goal,
which is to make Bob accept a message that was not sent
from Alice, as well as the added adversarial goal against
the explicit confirmation which is to make Alice believe
that Bob has accepted a message when, in fact, he has
rejected, or vice versa.

Note that there is a separation between these two adver-
sarial goals. Suppose Alice sends the message M . If Bob
receives the message M ′, where M 6= M ′, and he accepts
it, then the adversary has achieved her first goal. On the
other hand, suppose Alice sends M and Bob receives M ′

(possibly with M = M ′). Now, for whatever reason, Bob
rejects M ′; however, Alice is made to believe that Bob has
accepted in this session. In this case, the adversary has
achieved her second goal.

A quick, and rather primitive, way of providing explicit
confirmation is to have Bob authenticate a message to Al-
ice, using an MRP, where the message is announcing the
acceptance or rejection of the previous message from Alice.
Note that the role of Alice and Bob is not symmetric and
they cannot use the same hash chain pair {ai} and {bi}
for both when Alice is sending messages and when Bob is
sending messages; indeed, if they use the same hash chain,
a man-in-the-middle attack is possible. Hence, they need
to have two pairs of hash chains and basically get involved
in a procedure which has almost the same complexity as
the original primitive, in terms of memory, computation,
and communication.

For the first time, we propose a new MRP which provides
explicit confirmation without requiring any extra commu-
nication or computation between the participants. As for
the memory, on the sender’s side it has the same memory
requirement as the plain MRP, however, on the receiver’s
side it has the same memory requirement of the aforemen-
tioned primitive solution, which is basically twice as much
as the MRP without explicit confirmation.

7.1 A New Message Recognition Protocol with
Explicit Confirmation

The main idea behind this protocol is for Bob to use two
hash chains instead of one, {ci} for confirming the accep-
tance of messages and {di} for declining the acceptance
of messages. This of course will impact the verification
conditions on Alice’s side; however, the main core of the
protocol remains intact. Alice uses one hash chain {ai} for
sending her messages. In session i of the protocol, she is
trying to authenticate the message mi using key ai. Bob
authenticates himself to Alice, by sending ci, to confirm

that he has accepted the message from the previous ses-
sion, or by sending di, if he has declined the message he
received in the previous session. When receiving either ci
or di, Alice can check if Bob is the same person she was
speaking to during the prior sessions and receive an explicit
confirmation on wether or not her message was accepted
by Bob.

As in previous sections, consider a one-way hash function
H : {0, 1}s → {0, 1}s and a message authentication code
MAC : {0, 1}s×{0, 1}∗ → {0, 1}c, with typical parameters
of s ≥ 80 and c ≥ 30. Fix n to be the maximum number
of messages to be authenticated, or the maximum number
of sessions.

Now, Alice randomly chooses a0 and forms a hash chain
of the form ai = H(ai−1), i = 1, . . . , n. Alice uses ai
as keys for MAC values she computes in session i. Bob,
on the other hand, randomly chooses c0 and d0. He forms
ci = H(ci−1) and di = H(di−1), i = 1, . . . , n. In particular,
he uses ci as keys when he accepts the message of the
previous session, whereas he uses di as keys when he rejects
the message of the previous session.

The initialization phase is constituted of Alice sending
an to Bob over the narrow-band channel and Bob sending
cn and dn to Alice over the same channel.

The internal state of Alice includes (along with each vari-
able’s initial value):

• iA := n− 1: the position of Alice in her chain.
• iconfirm := n: the last index of Bob’s chain corre-

sponding to an accepted message by Bob.
• cA := cn: the last value of Bob’s confirm chain that

was accepted by Alice.
• idecline := n: the last index of Bob’s chain correspond-

ing to a rejected message by Bob.
• dA := dn: the last value of Bob’s decline chain that

was accepted by Alice.
• iacceptA := n: the last index of Bob’s chain that was

accepted by Alice.
• bA := cn: the last value of Bob’s chain that was ac-

cepted by Alice.
• M := Null: the input message to be authenticated in

the current session.
• a one-bit flag, to distinguish the program states A0

and A1.

On the other hand, Bob’s internal state is as follows:

• iB := n− 1: the position of Bob in his chain.
• iacceptB := n: the last index of Alice’s chain that was

accepted by Bob.
• aB := an: the last value of Alice’s chain that was

accepted by Bob.
• e′ := Null: the MAC value received in the current

session, supposedly from Alice.
• M ′ := Null: the message received in the current ses-

sion, supposedly from Alice.

17

• a one-trit flag, to distinguish the program states B0,
B1, and B2.

• r := 1, a one-bit flag to distinguish when Bob accepts
a message or not.

Alice and Bob start in program states A0 and B0. We
write commit-message(M, iA) to indicate that Alice is com-
mitting herself to sending the message M to Bob in session
iA. Moreover, we write accepted-message(iA) when Alice
learns that Bob has accepted a message in session iA. Si-
miliarly, we write rejected-message(iA) when Alice learns
that Bob has rejected a message in session iA. We let T
be the maximum amount of time Alice waits to receive a
response from Bob, and vice versa.

A0 is executed as follows:

If iA ≤ 0 then Abort.

Receive input (M) and commit-message(M, iA).

Compute eiA := MACaiA
(iA‖M).

Send [eiA ,M] to Bob and goto A1.

B0 is executed as follows:

If iB ≤ 0 then Abort.

Wait to receive [e′,M ′], then goto B1.

B1 has the following description:

If r = 1 then b := ciB .

If r = 0 then b := diB .

Send [iB , b] to Alice and goto B2.

A1 is performed in the following manner:

Wait at most time T to receive [i′B , b
′].

If [i′B , b
′] is received, then

Compute jc := iconfirm − iA and jd := idecline −
iA.

If i′B = iacceptA and bA = b′ (Bob has not re-
ceived the last flow of the previous session) then

Let N := Null.
Send [iacceptA, aiacceptA

, N] and goto A0.

If i′B = iA and cA = Hjc(b′) (Bob has accepted
the message of the previous session) then

Let N := M .
Send [iA, aiA , N] to Bob and accepted-
message(iacceptA).
Let iacceptA := i′B , bA := b′, iconfirm := i′B ,
cA := b′ and iA := iA − 1. (Alice updates
her state.)
goto A0.

If i′B = iA and dA = Hjd(b′) (Bob has rejected
the message of the previous session) then

Let N := M .
Send [iA, aiA , N] to Bob and rejected-
message(iacceptA).
Let iacceptA := i′B , bA := b′, idecline := i′B ,
dA := b′ and iA := iA − 1. (Alice updates
her state.)
goto A0.

else Resend [eiA ,M] to Bob and goto A1.

If timeout then

Resend [eiA ,M] to Bob and goto A1.

B2 is performed as follows:

Wait at most time T to receive [i′A, a
′, N ′].

If [i′A, a
′, N ′] is received, then

If i′A = iB and aB = H(a′) then (Alice and Bob
seem to be synchronized.)

If N ′ = M ′ and e′ = MACa′(i′A‖M ′) then
Accept(M ′, iB) and let r := 1.

else Accept(Null) and let r := 0.
Let iacceptB := i′A, aB := a′ and iB := iB−1.
(Bob updates his state.)
goto B0.

else goto B1.

If timeout, then goto B1.

Figure 18 illustrates the common case of this protocol.

7.2 Analysis of Our New Message Recognition
Protocol with Explicit Confirmation

In this section, we analyze our MRP with explicit confir-
mation and argue that under the assumptions described in
Definitions 1, 2, and 3, it provides security against both ad-
versarial goals—the usual adversarial goal against an MRP,
which is to make Bob accept a message that was not sent
from Alice, and the adversarial goal against the explicit
confirmation which is to make Alice believe that Bob has
accepted a message when he has in fact rejected, or vice
versa.

Let us begin by considering an adversary who tries to de-
ceive Bob into accepting a message that Alice did not send.
We first look at the change in the verifying conditions. In
this protocol, Bob verifies Alice and her messages the same
way he did in the protocol of Section 5. However, the in-
structions for Alice to verify Bob have changed. Previously,
Alice was supposed to check wether or not bA = H(b′),
where bA is the last value of Bob’s hash chain accepted by
Alice and b′ is what she received, supposedly from Bob,
in this session. Now, Alice keeps two values cA and dA,
the last values, respectively, from Bob’s confirm and de-
cline hash chains accepted by Alice. She also has two local
parameters jc and jd that she computes in program state

18

Alice Bob

Internal state: iA, iacceptA, bA, M Internal state: iB , iacceptB , aB , e′, M ′, r
iconfirm and cA, idecline and dA.
A0: B0:

If iA ≤ 0 then Abort. If iB ≤ 0 then Abort.
Receive (M) and commit-message(M, iA).
Compute eiA

:= MACaiA
(iA‖M).

Send [eiA
,M].

eiA
,M

−−−−−−→ Receive [e′,M ′].

A1: B1:
If r = 1 then b := ciB

.
If r = 0 then b := diB

.

Receive [i′B , b
′].

iB , b←−−−−−− Send [iB , b].

Compute jc := iconfirm − iA and
jd := idecline − iA.
If i′B = iacceptA and bA = b′ then

Let N := Null.
Send [iacceptA, aiacceptA

, N] and goto A0.

If i′B = iA and cA = Hjc (b′) then
Let N := M . B2:

Send [iA, aiA
, N] and accepted-message(iacceptA).

iA, aiA
, N

−−−−−−→ Receive [i′A, a
′, N ′].

Let iacceptA := i′B , bA := b′, iconfirm := i′B , If i′A = iB and aB = H(a′) then
cA := b′ and iA := iA − 1. If N ′ = M ′ and e′ = MACa′ (i

′
A‖M

′) then
goto A0. Accept(M ′, iB) and let r := 1.

If i′B = iA and dA = Hjd (b′) then else Accept(Null) and let r := 0.
Let N := M . Let iacceptB := i′A, aB := a′ and iB := iB − 1.
Send [iA, aiA

, N] and rejected-message(iacceptA). goto B0.
Let iacceptA := i′B , bA := b′, idecline := i′B , else goto B1.
dA := b′ and iA := iA − 1.
goto A0.

else Resend [eiA
,M] and goto A1.

Figure 18: Our Proposed Message Recognition Protocol with Explicit Confirmation (Common Case)

A1. Alice first checks to see whether cA = Hjc(b′) holds.
If so, Bob is verified and Alice is convinced that Bob has
accepted her message in the previous session. Otherwise,
she checks dA = Hjd(b′). If this latter equation holds, Bob
is verified and Alice believes that her message from the
previous session was not accepted by Bob.

Note that if either equation holds, Bob is verified. More-
over, note that jc and jd are defined in a way that they will
always be greater than or equal to 1. Hence, finding a b′

that makes either equation hold is no harder than finding a
b′ that verifies in cA = H(b′) or dA = H(b′). This brings us
back to using the same security assumptions described in
Definitions 1, 2, and 3. Moreover, attacks against this pro-
tocol reduce to attacks to our MRP of Section 6. Hence,
any adversary against this protocol who tries to deceive
Bob into accepting a message that Alice never sent is re-
duced to an adversary against the MRP of Section 5.

We next consider an adversary who tries to make Al-
ice believe that Bob has accepted in the previous session,
when, in fact, he has rejected. Such an adversary must con-
vince Alice that first of all she is speaking to Bob; that is,
b′ is verified by Alice. When Bob rejects, he sets b = diB .
Now, Eve wants cA = Hjc(b′) to verify. Not having seen
ciB , Eve wants to find a b′ such that Hjc(ciB) = Hjc(b′).
If she can efficiently find such a b′, then she is reduced to
an adversary who can attack the protocol of Section 5 by
finding b′′ = Hjc−1(b′) which hashes to ciB+jc .

Similarly, an adversary who tries to make Alice believe

that Bob has rejected in the previous session, when, in
fact, he has accepted, also reduces to an adversary against
the protocol of Section 5.

7.3 Security and Explicit Confirmation Theorem

We now sum up the above discussion into the following
theorem which concludes the analysis of the security of
the proposed message recognition protocol with explicit
confirmation.

Theorem 4 Consider an adversary against the protocol
of Section 7.1 who either efficiently deceives Bob into ac-
cepting (M ′,i), where M ′ is not Null and Alice did not
send M ′ in session i, or efficiently deceives Alice in be-
lieving that Bob has accepted a message when, in fact, he
has rejected, or vice versa. Such an adversary implies an
efficient algorithm that finds depth-i preimages or depth-i
second preimages, or creates depth-i existential forgeries.

8 Comments and Conclusion

We briefly reviewed the definitions and the security model
of message recognition protocols in the literature. Then,
we noted the equivalence of digital signature schemes
and stateless non-interactive message recognition proto-
cols. This equivalence suggests that interactive message

19

recognition protocols are more appropriate and poses an
open problem as to whether adding state to non-interactive
MRPs can make them, as interactive MRPs are, more ef-
ficient than digital signature schemes.

We looked at the Jane Doe message recognition proto-
col proposed by Lucks et al. (2005) in more detail and
described its inability to recover in case of a certain ad-
versarial disruption. In particular, in case of communica-
tion failure or adver- sarial disruption, this protocol is not
equipped with a practical resynchronization process and
can fail to resume.

In order to overcome the recoverability problem of the
Jane Doe protocol, we first suggested a variant of this pro-
tocol to overcome this problem which is equipped with a
resynchronization technique that allows users to resynchro-
nize whenever they wish or when they suspect an intrusion.
This approach is simple but fixes the recoverability issue of
the Jane Doe protocol at the price of having to call upon
a separate procedure.

We further proposed a new message recognition proto-
col, which is based on the Jane Doe protocol, but this
time, incorporates a resynchronization technique within it-
self and, hence, provides self-recoverability. We formally
proved the security of our protocol.

It should be noted that our second solution is somewhat
less efficient than the Jane Doe protocol in that each mes-
sage M is transmitted twice (in the first flow, and again in
the third flow of Figure 11). This would not be a problem
if the communication channel is inexpensive. However, it
(roughly) doubles the power consumption as compared to
the Jane Doe protocol if messages are large. If this creates
a problem, it would be possible to modify our protocol by
sending N = H(M) in the third flow instead of N = M .
Then Bob checks that N ′ = H(M ′) instead of N ′ = M ′.

Finally, we proposed another message recognition pro-
tocol that provides explicit confirmation with the minimal
effort of using an extra hash chain for Bob, and with no
extra communication requirement.

Acknowledgements

We would like to thank Natural Sciences and Engineering
Research Council of Canada (NSERC) and Mathematics of
Information Technology and Complex Systems (MITACS)
for supporting this research, and the anonymous reviewers
for helping us to improve this paper.

REFERENCES

Anderson, R., Bergadano, F., Crispo, B., Lee, J.-H., Man-
ifavas, C. & Needham, R. (1998), A New Family of
Authentication Protocols, in ‘ACMOSR: ACM Oper-
ating Systems Review’, Vol. 32, pp. 9–20.

Gehrmann, C. (1998), ‘Multiround Unconditionally Secure
Authentication’, Designs, Codes, and Cryptography
15(1), 67–86.

Hammell, J., Weimerskirch, A., Girao, J. & Westhoff,
D. (2005), Recognition in a Low-Power Environment,
in ‘ICDCSW ’05: Proceedings of the Second Inter-
national Workshop on Wireless Ad Hoc Network-
ing (WWAN)’, IEEE Computer Society, Washington,
DC, USA, pp. 933–938.

Lucks, S., Zenner, E., Weimerskirch, A. & Westhoff, D.
(2005), Entity Recognition for Sensor Network Motes,
in ‘GI Jahrestagung (2)’, pp. 145–149.

Lucks, S., Zenner, E., Weimerskirch, A. & Westhoff,
D. (2008), Concrete Security for Entity Recognition:
The Jane Doe Protocol, in ‘Progress in Cryptology—
INDOCRYPT 2008’, Vol. 5365 of Lecture Notes in
Computer Science, Springer, pp. 158–171.

Lucks, S., Zenner, E., Weimerskirch, A. & Westhoff, D.
(2009), ‘Concrete Security for Entity Recognition:
The Jane Doe Protocol (Full Paper)’, Cryptology
ePrint Archive, Report 2009/175. http://eprint.
iacr.org/.

Mashatan, A. & Stinson, D. R. (2008), A New Message
Recognition Protocol for Ad Hoc Pervasive Networks,
in M. K. Franklin, L. C. K. Hui & D. S. Wong, eds,
‘CANS’, Vol. 5339 of Lecture Notes in Computer Sci-
ence, Springer, pp. 378–394.

Menezes, A., van Oorschot, P. C. & Vanstone, S. A. (1996),
Handbook of Applied Cryptography, CRC Press.

Mitchell, C. J. (2003), Remote User Authentication Us-
ing Public Information, in K. G. Paterson, ed., ‘IMA
Int. Conf.’, Vol. 2898 of Lecture Notes in Computer
Science, Springer, pp. 360–369.

Weimerskirch, A. & Westhoff, D. (2003), Zero Common-
Knowledge Authentication for Pervasive Networks, in
‘Selected Areas in Cryptography’, Vol. 3006 of Lecture
Notes in Computer Science, Springer, pp. 73–87.

20

