
29

Pairing-Based Onion Routing with Improved
Forward Secrecy

ANIKET KATE, GREG M. ZAVERUCHA, and IAN GOLDBERG
University of Waterloo

This article presents new protocols for onion routing anonymity networks. We define a provably
secure privacy-preserving key agreement scheme in an identity-based infrastructure setting,
and use it to design new onion routing circuit constructions. These constructions, based on a
user’s selection, offer immediate or eventual forward secrecy at each node in a circuit and require
significantly less computation and communication than the telescoping mechanism used by the
Tor project. Further, the use of an identity-based infrastructure also leads to a reduction in the
required amount of authenticated directory information. Therefore, our constructions provide
practical ways to allow onion routing anonymity networks to scale gracefully.

Categories and Subject Descriptors: C.2.6 [Computer-Communication Networks]: Inter-
networking; C.2.4 [Computer-Communication Networks]: Distributed Systems—Distributed
applications; E.3 [Data]: Data Encryption—Public key cryptosystems

General Terms: Design, Performance, Security

Additional Key Words and Phrases: Onion routing, Tor, pairing-based cryptography, anonymous
key agreement, forward secrecy

ACM Reference Format:
Kate, A., Zaverucha, G. M., and Goldberg, I. 2010. Pairing-based onion routing with improved
forward secrecy. ACM Trans. Inf. Syst. Secur. 13, 4, Article 29 (December 2010), 32 pages.
DOI = 10.1145/1880022.1880023. http://doi.acm.org/10.1145/1880022.1880023.

1. INTRODUCTION

Over the years, a large number of anonymity networks have been proposed
and some have been implemented. Common to many of them is onion routing

The authors of this work were supported in part by the Natural Sciences and Engineering
Research Council of Canada, the Mathematics of Information Technology and Complex Systems
Network of Centres of Excellence, and David R. Cheriton Graduate Scholarships.
Authors’ address: A. Kate, G. M. Zaverucha, and I. Goldberg, David R. Cheriton School of
Computer Science, University of Waterloo, 200 University Ave. West, Waterloo, ON, Canada N2L
3G1; email: {akate, gzaveruc, iang}@cs.uwaterloo.ca.
Permission to make digital or hard copies part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others than ACM must be hon-
ored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2010 ACM 1094-9224/2010/12-ART29 $10.00 DOI: 10.1145/1880022.1880023.

http://doi.acm.org/10.1145/1880022.1880023.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



29: 2 · A. Kate et al.

[Reed et al. 1998], a technique whereby a message is wrapped in multiple
layers of encryption, forming an onion. As the message is delivered via a
number of intermediate onion routers (abbreviated ORs, also called hops or
nodes), each node decrypts one of the layers, and forwards the message to the
next node. This idea goes back to Chaum [1981] and has been used to build
both low- and high-latency communication networks.

A common realization of an onion routing system is to arrange a collection
of nodes that will relay traffic for users of the system. Users then randomly
choose a path through the network of onion routers and construct a circuit: a
sequence of nodes which will route traffic. After the circuit is constructed, each
of the nodes in the circuit shares a symmetric key with the user, which will be
used to encrypt the layers of future onions.

Pairing-based cryptography (see Koblitz and Menezes [2005] for a detailed
discussion) has drawn an overwhelming amount of research attention in the
last few years. In one of the pioneering works in the field, Sakai et al. [2000]
presented a noninteractive key agreement scheme in the identity-based setting.
In this article, we enhance their protocol to develop provably secure one- or
two-way (also referred to as unilateral or bilateral) privacy-preserving authen-
tication and key agreement schemes. After one-way authentication between
Alice (who will remain anonymous) and Bob (who is to be authenticated), Alice
has confirmed Bob’s identity and Bob learns nothing about Alice, except per-
haps that she is a valid user of a particular system. In a two-way scheme,
each user can confirm the other is a valid user without learning who the
other is.

We then use our one-way anonymous key agreement protocol to build onion
routing circuits for anonymity networks like Tor [Dingledine et al. 2004] and
prove security-related properties of the new construction. Our protocol, which
first appeared in Kate et al. [2007a], constructs a circuit in a single pass and
also provides a practical way to achieve eventual forward secrecy. Observ-
ing the performance trade-off between immediate and eventual forward se-
crecy in onion routing circuit construction, we also develop a λ-pass circuit
construction, which obtains immediate forward secrecy at λ nodes by incor-
porating λ single-pass circuit constructions. The performance of our circuit
construction protocols surpass that of Tor, requiring significantly less com-
putation and fewer network communications. Further, they do not require
the public keys of onion routers to be authenticated and consequently, re-
duce the load on directory servers which improves the scalability of anonymity
networks.

Previous work related to pairing-based key exchange, as well as to
anonymity networks, is covered in Section 2. We describe the cryptographic
protocols in Section 3, and an onion routing system built with a Boneh-Franklin
identity-based infrastructure in Section 4. In Section 5, we present our λ-pass
circuit construction and prove some security properties of our onion routing
circuit constructions in Section 6. Some of the more practical issues in such
a system are discussed in Section 7 and we compare our computational and
communication costs to those of Tor in Section 8.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



Pairing-Based Onion Routing with Improved Forward Secrecy · 29: 3

2. RELATED WORK

The concept of onion routing plays a key role in many efforts to provide anony-
mous communication [Dai 1998; Dingledine et al. 2004; Freedman and Morris
2002; Reed et al. 1998; Rennhard and Plattner 2002] while a number of other
papers discuss formalizations and the security of onion routing [Camenisch
and Lysyanskaya 2005; Mauw et al. 2004; Möller 2003; Syverson et al. 2000].
To date, the largest onion routing system is Tor, which has approximately
1000 onion routers and hundreds of thousands of users [Tor Project 2008].
These numbers (and their growth) underscore the demand for anonymity
online.

In the original Onion Routing project [Goldschlag et al. 1996; Reed et al.
1998; Syverson et al. 2000] (which was superseded by Tor) circuit construction
was done as follows. The user created an onion where each layer contained the
symmetric key for one node and the location of the next node, all encrypted with
the original node’s public key. Each node decrypts a layer, keeps the symmetric
key, and forwards the rest of the onion along to the next node. The main draw-
back of this approach is that it does not provide forward secrecy (as defined in
Dingledine et al. [2004]). Suppose a circuit is constructed from the user to the
sequence of nodes A ⇔ B ⇔ C, and that A is malicious. If A records the traffic,
and at an arbitrary time in the future compromises B (at which point he learns
the next hop is C), and then compromises C, the complete route is known, and
A learns who the user has communicated with. A possible fix for this problem
is to frequently change the public keys of each node. This limits the amount of
time A has to compromise B and C, but requires that the users of the system
frequently contact the directory server to retrieve authentic keys.

Later systems constructed circuits incrementally and interactively (this
process is sometimes called telescoping). The idea is to use the node’s public
key only to initiate a communication during which a temporary session key is
established via the Diffie-Hellman key exchange. Tor constructs circuits in this
way, using the Tor Authentication Protocol (TAP). TAP is described and proven
secure in Goldberg [2006].

Trade-offs exist between the two methods of constructing circuits. Forward
secrecy is the main advantage of telescoping, but telescoping also handles nodes
that are not accepting connections; if the third node is down during the con-
struction of a circuit, for example, the first two remain, and the user only needs
to choose an alternate third. Information about the status and availability of
nodes is therefore less important. The drawback of telescoping is cost; estab-
lishing a circuit of length � requires O(�2) network communications, and O(�2)
symmetric encryptions/decryptions.

Øverlier and Syverson [2007] improve the efficiency of telescoping-based cir-
cuit construction using a half-certified Diffie-Hellman key exchange [Menezes
et al. 1997, Section 12.6]. They further define an efficient single-pass circuit
construction and a few variants. The proposed variants offer different levels
of forward secrecy, which are traded off against computation and communi-
cation. For example, their eventual forward secret variants use frequent ro-
tation of nodes’ public keys, presenting the same issues as in first-generation

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



29: 4 · A. Kate et al.

onion routing; their immediate forward secrecy variant uses the same amount
of communication as the current Tor (O(�2)), but less computation.

In related efforts, Camenisch and Lysyanskaya [2005] formally define the
requirements of a secure onion routing construction in the Universal Compos-
ability (UC) framework [Canetti 2001] and present a generic construction of
onion routing circuits. Although formally secure, their construction is less ef-
ficient than other constructions due to the additional mechanisms required to
prove security in the UC framework. While no attacks are known when these
mechanisms are removed, the proof no longer holds. Forward secrecy may be
provided by using a forward secret CCA2-secure cryptosystem such as Canetti
et al. [2007].

The work of Okamoto and Okamoto [2005] presents schemes for anonymous
authentication and key agreement. In Rahman et al. [2006], an anonymous
authentication protocol is presented as part of an anonymous communication
system for mobile ad hoc networks. The protocols in both papers are complex,
and limited motivation is given for design choices. Further, both papers neglect
to discuss the security of their proposed protocols. The protocols we present
in Section 3.2 are a great deal simpler than previous protocols. This allows
them to be more easily understood, and simplifies the discussion of their se-
curity, which appears in Section 3.3. A recent article [Huang 2007] presents a
pseudonym-based encryption scheme similar to our anonymous key agreement
protocol in Section 3.2, but differs in its method of private-key extraction as
well as in the motivation behind its use.

All these protocols owe a lot to the noninteractive key exchange protocol
of Sakai et al. [2000]. In the next section, we will review their scheme after
covering relevant background material.

3. PAIRING-BASED KEY AGREEMENT WITH USER ANONYMITY

In one of the pioneering works of pairing-based cryptography, Sakai et al. sug-
gested an identity-based noninteractive key agreement scheme using bilinear
pairings [Sakai et al. 2000]. In this section, we extend this key agreement
scheme. We replace the identities of the participants by pseudonyms. The re-
sulting scheme provides unconditional anonymity to participating users.

3.1 Preliminaries

We briefly review bilinear pairings and the original noninteractive key agree-
ment scheme of Sakai et al. [2000]. For a detailed presentation of pairings
and cryptographic applications thereof, see Blake et al. [2005] and references
therein.

3.1.1 Bilinear Pairings. Consider two additive cyclic groups G1 and G2 and
a multiplicative cyclic group GT , all of the same prime order n. A bilinear map
e is a map e : G1 × G2 → GT with the following properties.

(1) Bilinearity. For all P ∈ G1, Q ∈ G2 and a, b ∈ Zn, e(aP, b Q) = e(P, Q)ab .
(2) Nondegeneracy. The map does not send all pairs in G1 × G2 to unity in GT .
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



Pairing-Based Onion Routing with Improved Forward Secrecy · 29: 5

(3) Computability. There is an efficient algorithm to compute e(P, Q) for any
P ∈ G1 and Q ∈ G2.

Our protocols, like many pairing-based cryptographic protocols, use a spe-
cial form of bilinear map called a symmetric pairing where G1 = G2. For such
pairings e(P, Q) = e(Q, P) for any P, Q ∈ G1. The modified Weil pairing over
elliptic curve groups [Verheul 2001] is an example of a symmetric bilinear pair-
ing. In the rest of the article, all bilinear pairings are symmetric, and we denote
G1 = G2 by G.

3.1.2 The Bilinear Diffie-Hellman Assumption. Using the preceding nota-
tion, the Bilinear Diffie-Hellman (BDH) problem is to compute e(P, P)abc ∈ GT
given a generator P of G and elements aP, b P, cP for a, b , c ∈ Z∗

n. An equivalent
formulation of the problem is to compute e(A , B)c given a generator P of G, and
elements A, B, and cP in G.

An algorithm A has advantage ε(κ) in solving the BDH problem for
〈n, G, GT, e〉, where κ is the bitlength of n, if Pr[A(k, G, GT, A , B, cP) =
e(A , B)c] ≥ ε(κ). As usual, for the security parameter κ , a function η(·) is
called negligible if for all c > 0 there exists a κ0 such that η(κ) < 1/κc for all
κ > κ0. If for every polynomial-time (in κ) algorithm to solve the BDH problem
on 〈n, G, GT, e〉, the advantage ε(κ) is a negligible function, then 〈n, G, GT, e〉 is
said to satisfy the BDH assumption.

3.1.3 Boneh-Franklin Setup and Noninteractive Key Agreement. In a
Boneh-Franklin Identity-Based Encryption (BF-IBE) setup [Boneh and
Franklin 2001], a trusted authority, called a Private Key Generator (PKG),
generates private keys (di) for clients using the clients’ well-known identities
(IDi) and a master secret s. A client with identity IDi receives the private key
di = sH(IDi) ∈ G, where H : {0, 1}∗ → G∗ is a full-domain cryptographic hash
function and G∗ denotes the set of all elements in G except the identity.

Sakai et al. [2000] observed that, with such a setup, any two clients of the
same PKG can compute a shared key using only the identity of the other par-
ticipant and their own private keys. Only the two clients and the PKG can
compute this key. For two clients with identities IDA and IDB, the shared key
is given by KA ,B = e(Q A, QB)s = e(Q A, dB) = e(dA, QB) where Q A = H(IDA) and
QB = H(IDB).

Dupont and Enge [2006] proved that this protocol is secure in the random
oracle model assuming the BDH problem in 〈n, G, GT, e〉 is hard.

3.2 Anonymous Key Agreement

We observe that by replacing the identity hashes with pseudonyms generated
by users, a key agreement protocol with unconditional anonymity is possible.
In our protocol, each participant can confirm that the other participant is a
client of the same PKG, but cannot determine his identity. Each client can, on
her own, randomly generate many possible pseudonyms and the corresponding
private keys.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



29: 6 · A. Kate et al.

Suppose Alice, with (identity, private key) pair (IDA, dA), is seeking ano-
nymity. She generates a random number rA ∈ Z∗

n and creates the pseudonym
and corresponding private key (PA = rA Q A = rA H(IDA), rAdA = sPA ). In a
key agreement protocol, she sends the pseudonym PA instead of her actual
identity to another participating client, who may or may not be anonymous.
For two participants (say Alice and Bob) with pseudonyms PA and PB, the
shared session key is given as

KA ,B = e(PA, PB)s = e(Q A, QB)rArBs,

where rA and rB are random numbers generated respectively by Alice and Bob.
If Bob does not wish to be anonymous, he can just use rB = 1 instead of a
random value, resulting in PB = QB. If persistent pseudonymity is desired
instead of anonymity, the random values can easily be reused.

Two participants can perform a session key agreement by exchanging
pseudonyms. Further, two participants can also perform an authenticated key
agreement by modifying any secure symmetric-key-based mutual authentica-
tion protocol and simply replacing their identities by their pseudonyms.

3.2.1 One-Way Anonymous Key Agreement. Anonymous communication of-
ten requires anonymity for just one of the participants; the other participant
works as a nonanonymous service provider and the anonymous participant
needs to confirm the service provider’s identity. In the key agreement proto-
col, the service provider uses her actual identity rather than a pseudonym.
Further, in this one-way anonymity setting two participants can agree on a
session key in a noninteractive manner. A noninteractive scheme to achieve
this is defined next.

Suppose Alice and Bob are clients of a PKG. As before, Alice has identity
IDA and private key dA = sQ A = sH(IDA). Alice wishes to remain anonymous
to Bob, but she knows Bob’s identity IDB.

(1) Alice computes QB = H(IDB). She chooses a random integer rA ∈ Z
∗
n, gener-

ates the corresponding pseudonym PA = rA Q A and private key rAdA = sPA ,
and computes the session key KA ,B = e(sPA, QB) = e(Q A, QB)srA . She sends
her pseudonym PA to Bob.

(2) Bob, using PA and his private key dB, computes the session key KA ,B =
e(PA, dB) = e(Q A, QB)srA .

Note that in step 1, Alice can also include a message for Bob symmetrically
encrypted with the session key; we will use this in Section 4. Note also that in
practice, the session key is often derived from KA ,B, and is not just KA ,B itself.

3.2.2 Key Authentication and Confirmation. In most one-way anonymous
communication situations, it is also required to authenticate the nonanony-
mous service provider. With the noninteractive protocols of this section, the
key is implicitly authenticated; Alice is assured that only Bob can compute the
key. If Alice must be sure Bob has in fact computed the key, explicit key confir-
mation can be achieved by incorporating any symmetric-key-based challenge-
response protocol.
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



Pairing-Based Onion Routing with Improved Forward Secrecy · 29: 7

3.3 Security and Anonymity

In this section, we discuss the security and anonymity of our key agreement
schemes in the random oracle model.

For the security parameter κ , we consider a problem to be infeasible, if for
any polynomial-time (in κ) algorithm to solve it, the advantage ε(κ) is a negli-
gible function. On the other hand, we consider a problem to be impossible, if
for any algorithm to solve it with unbounded space and time complexity, the
advantage ε(κ) is a negligible function.

Based on these definitions, we make the following claims.

Unconditional Anonymity. It is impossible for the other participant in a pro-
tocol run, the PKG, or any third party to learn the identity of an anonymous
participant in a protocol run.

Session Key Secrecy. It is infeasible for anyone other than the two par-
ticipants or the PKG to determine a session key generated during a
protocol run.

No Impersonation. It is infeasible for a malicious client of the PKG to
impersonate another (nonanonymous) client in a protocol run. In the case of
persistent pseudonymity, it is not feasible for a malicious entity to communi-
cate using a different entity’s pseudonym.

Next, we prove each of our claims.

3.3.1 Unconditional Anonymity. Here, we prove that it is impossible for an
adversary A to learn the identity of an anonymous participant in a protocol run.
For ease of comprehension, we first briefly discuss it in an informal manner. For
an anonymous client with identity IDA , the pseudonym PA = rA Q A ∈ G is the
only parameter exchanged during the protocol that is derived from her identity.
Because G is a cyclic group of prime order, Q A is a generator, so multiplying
by the random rA blinds the underlying identity from the adversary A, which
can be the other participant in the protocol run, the PKG for the system, or any
third party. To formalize our proof, we consider the following game between an
adversary and a challenger.

Setup. The adversary A publishes the system parameters: a cyclic
additive group G of prime order n (which has bitlength κ) and a
hash function H : {0, 1}∗ → G

∗.
Challenge. A chooses two identity strings IDA and IDB and sends

them to the challenger. The challenger computes Q A = H(IDA )
and QB = H(IDB). He then uniformly at random chooses r ∈ Z∗

n
and b ∈ {0, 1}, then

(1) if b = 0, computes a pseudonym P = rQ A or
(2) if b = 1, computes a pseudonym P = rQB

and sends P to A.
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



29: 8 · A. Kate et al.

Guess. A wins the game if she can guess the correct value of b with
probability 1/2 + ε(κ) for a nonnegligible function ε.

As G is a cyclic prime order group, both Q A and QB are generators of G.
For the uniform random element r ∈ Z∗

n, the pseudonym P equal to rQ A or
rQB is also a uniform random element of G∗. Therefore, an attacker cannot
determine which of the two ways the challenger generated P and consequently
cannot guess the value of b with probability greater than 1/2 to win this game.
The inability of the attacker to win this game for system parameters of their
choosing, even with unbounded computation power, proves our unconditional
anonymity claim.

3.3.2 Session Key Secrecy. Dupont and Enge [2006] prove the security of
the key agreement scheme of Sakai et al. [2000] in the random oracle model us-
ing an analysis technique by Coron [2000]. According to their proof, an attacker
cannot compute the shared key if the BDH assumption holds on 〈n, G, GT, e〉,
and H is modeled by a random oracle. Here, we modify their proof to prove that
it is infeasible for anyone other than the two participants or the PKG to deter-
mine a session key generated during a protocol run of the one-way or two-way
anonymous key agreement.

Consider the following game to prove key secrecy in the one-way anonymous
case.

Setup. The challenger generates groups G and GT of prime order n, a
cryptographic hash function H : {0, 1}∗ → G∗, a symmetric bilin-
ear pairing e : G × G 	→ GT , and a master secret s ∈ Z

∗
n.

Extraction Queries. The adversary A1 issues q extraction queries
for identities ID1, ID2, . . . , IDq to the challenger. The chal-
lenger queries H to compute the corresponding private keys
sH(ID1), sH(ID2), . . . , sH(IDq) and sends them back to A1.

Challenge. Once A1 informs the challenger that it has collected
enough information, the challenger picks an element PA ∈ G∗ and
sends it to A1.

Guess. A1 outputs a binary string (an identity) IDB and KA ,B ∈ GT .

The attacker’s advantage can be defined as

Adv(A1) = Pr[e(PA, H(IDB))s = KA ,B].

We say A1 (t1, ε1)-wins the game, if it runs in time at most t1 and has
advantage ε1.

Next, consider the following game to prove key secrecy in the two-way anony-
mous case.

Setup. The challenger generates groups G and GT of order n, a cryp-
tographic hash function H : {0, 1}∗ → G∗, a symmetric bilinear
pairing e : G × G 	→ GT , and a master secret s ∈ Z∗

n.
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



Pairing-Based Onion Routing with Improved Forward Secrecy · 29: 9

Extraction Queries. The adversary A2 issues q extraction queries for
identities ID1, ID2, . . . , IDq ∈ G to the challenger. The chal-
lenger queries H to compute the corresponding private keys
sH(ID1), sH(ID2), . . . , sH(IDq) and sends them back to A2.

Challenge. Once A2 informs the challenger that it has collected
enough information, the challenger picks two elements PA and
PB in G∗ and sends them to A2.

Guess. A2 outputs KA ,B ∈ GT .

The attacker’s advantage can be defined as

Adv(A2) = Pr[e(PA, PB)s = KA ,B].

We say A2 (t2, ε2)-wins the game, if it runs in time at most t2 and has
advantage ε2.

Suppose that there is an adversary A1 who (t1, ε1)-wins the one-way anony-
mous game and an adversary A2 who (t2, ε2)-wins the two-way anonymous
game. We now show that an algorithm B can make use of A1 or A2 to solve
a random instance of the BDH problem.

THEOREM 1. Let the hash function H be modeled by a random oracle. Sup-
pose there exist adversaries A1 and A2 such that A1 (t1, ε1)-wins the one-way
anonymous protocol security game and A2 (t2, ε2)-wins the two-way anonymous
protocol security game. Then there exists an algorithm B which solves the BDH
problem:

—using A1 with probability ε1
e(1+q) in time t1 + wq + tT + tinv or

—using A2 with probability ε2 in time t2 + wq.

Here e is the base of natural logarithms, w is a small constant, q is an upper
bound on the number of extraction queries performed by an adversary, tT is the
time required for exponentiation in GT, and tinv is the time required to invert an
element of Z∗

n.

PROOF. Let (P, aP, b P, cP) ∈ G be a random and uniformly distributed in-
stance of the BDH problem, which algorithm B receives as input. To find the
solution e(P, P)abc, B simulates the challenger for A1 or A2. This means that
B must simulate the random oracle H and answer the private key extraction
queries by A1 or A2. As the steps for H-queries and extraction queries are the
same in both A1 or A2, we denote both of them by A.

H-queries. At any time, A can query the random oracle H. To respond to
these queries, B maintains an initially empty list L of quadruples (X , Q, h, β) ∈
{0, 1}∗ × G

∗ × Z
∗
n × {0, 1}. When A queries for the hash value of some bit-string

Xi, algorithm B responds as follows.

(1) If L contains a quadruple (Xi, Qi, hi, βi), B responds by sending Qi.
(2) Otherwise, B generates at random βi ∈ {0, 1}, so that Pr[βi = 0] = δ, where

δ depends on B’s choice for the attacker (A1 or A2) and will be determined
shortly.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



29: 10 · A. Kate et al.

(3) Algorithm B picks a random hi ∈ Z∗
n. If βi = 0, set Qi = hiP, else set Qi =

hi(b P). Note that either way, Qi is uniformly random in G∗ and independent
of A’s current view.

(4) Finally, algorithm B adds the quadruple (Xi, Qi, hi, βi) to the list L and re-
sponds with Qi.

Extraction queries. A can ask for extraction queries for identity strings. For
an input string IDi for private key extraction, B responds as follows.

(1) Algorithm B runs the aforesaid H-query algorithm for input Xi = IDi to
obtain (IDi, Qi, hi, βi).

(2) If βi = 1 then B reports failure.
(3) Otherwise, B computes the private key hi(cP) = cQi and sends it to algo-

rithm A.

Challenge. After completing the extraction queries, B challenges A1 with
PA = aP or A2 with PA = aP and PB = b P.

Guess. A1 outputs (IDB, KA ,B) ∈ {0, 1}∗ × GT or A2 outputs KA ,B ∈ GT . In
the case of adversary A2, B outputs σ = KA ,B as its guess for the solution to the
BDH problem. For the adversary A1, algorithm B performs following steps.

(1) B obtains the quadruple (IDB, QB, hB, βB) from the list L. Absence of the
quadruple (IDB, QB, hB, βB) in the list L indicates that A1 did not ask the
random oracle for H(IDB). As the probability of the adversary’s success in
this case is negligible,1 we safely assume the presence of the quadruple
(IDB, QB, hB, cB).

(2) If βB = 1, B outputs σ = Kh−1
B

A ,B as its guess for the BDH instance.
(3) If βB = 0, B reports failure.

Suppose that B does not report failure and outputs σ while using A1. As βB =
1, H(IDB) = hB(b P) and with probability ε1, σ = e(aP, hB(b P))ch−1

B = e(P, P)abc.
Therefore B will guess correctly with probability ε1, when it does not abort. The
probability that B does not abort while extracting a single private key query is
δ; for q queries, the probability is δq. The probability that B does not abort
while guessing the BDH solution is 1 − δ. Therefore, the overall probability
of nonabortion is δq(1 − δ). Maximizing this probability, the optimal value can
be obtained at δ = q

1+q and by choosing the value of δ optimally, the overall

probability of nonabortion is qq

(1+q)q+1 . Therefore, B outputs the correct solution

to the BDH instance with probability at least ε1qq

(1+q)q+1 ≥ 1
e(1+q) as (1 − 1

q+1 )q ≥ 1/e.
The solution is computed in time t1 + wq + tT + tinv , where t1 is the time required
by A, w is the time required to answer an extraction query (generate a random
element r and compute the rth multiple of cP), q is an upper bound on the

1If A1 does not query the random oracle for H(IDB), the probability it can guess this value is
negligible. As there is a bijection between x and e(PA , x) for a given PA , the probability that A1
can output KA,B = e(PA , H(IDB)) is also negligible. Thus, A1’s advantage in this case is negligible.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



Pairing-Based Onion Routing with Improved Forward Secrecy · 29: 11

number of such queries, and tT + tinv is the time to invert an element of Z∗
n and

to compute an exponentiation of KA ,B ∈ GT in the guessing phase.
For adversary A2, we simply set the value of δ to 1. Suppose that B

does not report failure and outputs σ while using A2. With probability ε2,
σ = e(aP, b P)c = e(P, P)abc, which is the correct solution to the BDH problem.
The solution is computed in time t2 + wq.

Note that it is possible to prove the security of the two-way anonymous key
agreement protocol without random oracles, if we do not consider the query
extraction phase. Assume that only one identity hash and private key pair
(U, sU) is publicly available and each user uses the same pair to generate
a pseudonym and corresponding private key. Given an adversary A to (t, ε)-
compute KA ,B = e(PA, PB)s when challenged by PA and PB, a random instance
(P, aP, b P, cP) of the BDH problem can be solved in time t with probability ε by
publishing (P, cP) as the publicly available identity hash and private key and
challenging A with PA = aP and PB = b P.

3.3.3 No Impersonation. We claim that it is infeasible for a malicious client
of the PKG to impersonate another (nonanonymous) client in a protocol run.
To successfully impersonate a nonanonymous participant IDN in our one-way
anonymous key agreement protocol, given a pseudonym and IDN, an adversary
needs to determine the corresponding session key. We observe that the adver-
sary game for nonanonymous participant impersonation is the same as the key
secrecy game of the one-way anonymous key agreement in Section 3.3.2 and
consequently the corresponding theorem and proof carry over.

In the case of persistent pseudonymity, we claim that it is not feasible
for a malicious entity to communicate using a different entity’s pseudonym.
Here, the malicious entity needs to find the shared secret key for a persistent
pseudonym generated and used by some other anonymous entity and an ar-
bitrary identity or pseudonym for which it does not know the private key. In
the one-way anonymous communication protocol, the corresponding adversary
game remains the same as that for impersonation of the nonanonymous entity,
and in the two-way anonymous case, the game is the same as the one used to
prove key secrecy. Consequently, the theorem and proof for the corresponding
game are same as those used to prove key secrecy in Section 3.3.2.

3.4 Distributed PKG

The PKG in the BF-IBE framework, with the master key, has the power to
decrypt all messages encrypted for clients. As our schemes use the same setup
as BF-IBE, the PKG can compute a session key from the publicly available
pseudonyms and the master key s. Due to this, compromise of the PKG is a
single point of failure for security.

Boneh and Franklin [2001] suggest the use of a distributed PKG instead a
single PKG to mitigate this problem. Their distributed PKG uses t out of m
Shamir secret sharing [Shamir 1979], which involves distributing the master
key information among m PKGs, such that any t + 1 of them, but no fewer, can
compute the master key or generate a private key for a client. Instead of this

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



29: 12 · A. Kate et al.

basic arrangement, we suggest use of a verifiable and proactively secure dis-
tributed PKG over the Internet [Kate and Goldberg 2007], where a master key
is generated in a completely distributed way with each of m PKGs contribut-
ing a random share. The distributed design is additionally more robust; at
any given time only t + 1 of the m PKGs must be online in order for a client to
retrieve his private key.

3.5 Applications of Our Anonymity Schemes

Our anonymous key agreement schemes can be used to perform anonymous
communication in any setting having a BF-IBE setup. In recent years, numer-
ous BF-IBE-based solutions have been suggested for various practical situa-
tions such as ad hoc networks [Chien and Lin 2006; Khalili et al. 2003; Seth
and Keshav 2005]. Our anonymous key agreement schemes can be used in
all of these setups without any extra effort. As an example, we refer readers
to the secure anonymous communication scheme for delay-tolerant networks
[Kate et al. 2007b]. In the present article, we focus on a new pairing-based
onion routing protocol which achieves forward secrecy and constructs circuits
without telescoping. We describe this protocol in the next section.

4. PAIRING-BASED ONION ROUTING

Low-latency onion routing requires one-way anonymous key agreement and
forward secrecy. In this section, we describe a new pairing-based onion routing
protocol using the noninteractive key agreement scheme defined in Section 3.2.

Our onion routing protocol has a significant advantage over the original
onion routing protocol [Goldschlag et al. 1996] as well as the protocol used in
Tor [Dingledine et al. 2004]; it provides a practical way to achieve forward se-
crecy without building circuits by telescoping. Though this is possible with the
original onion routing protocol, that method involves regularly communicating
authenticated copies of onion routers’ (ORs’) public keys to the system users;
forward secrecy is achieved by periodically rotating these keys. This does not
scale well; every time the public keys are changed all users must contact a
directory server to retrieve the new authenticated keys. However, our onion
routing protocol uses ORs’ identities, which users can obtain or derive without
repeatedly contacting a central server, thus providing practical forward secrecy
without telescoping.

4.1 Design Goals and Threat Model

As our protocol only differs from existing onion routing protocols in the circuit
construction phase, our threat model is that of Tor. For example, adversaries
have complete control over some part (but not all) of the network, as well as
control over some of the nodes themselves.

We aim at frustrating attackers from linking multiple communications to or
from a single user. Like Tor, we do not try to develop a system secure against a
global observer, which can in theory follow end-to-end traffic. Further, it should
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



Pairing-Based Onion Routing with Improved Forward Secrecy · 29: 13

not be feasible for any node to determine the identity of any node in a circuit
other than its two adjacent nodes. Finally, we require forward secrecy: after
some amount of time, the session keys used to protect node identities and the
contents of messages are irrecoverable, even if all participants in the network
are subsequently compromised.

4.2 Pairing-Based Onion Routing Protocol

An onion routing protocol involves a service provider, a set of onion routers, and
users. In our protocol, a user does not build the circuit incrementally via tele-
scoping, but rather in a single pass. The user chooses � ORs from the available
pool and generates separate pseudonyms for communicating with each of them.
The user computes the corresponding session keys and uses them to construct
a message with � nested layers of encryption. This process uses the protocol
given in Section 3.2 � times.

The service provider works as the PKG for the ORs and provides private
keys for their identities.

4.2.1 Forward Secrecy. There are two time-scale parameters in our proto-
col: the master key validity period (VPMK) and the private key validity period
(VPPK). Both of these values relate to the forward secrecy of the system. The
VPPK specifies how much exposure time a circuit has against compromises of the
ORs that use it. That is, until the VPPK elapses, the ORs have enough infor-
mation to collectively decrypt circuit construction onions sent during that VPPK.
After each VPPK, ORs discard their current private keys and obtain new keys
from the PKGs. This period can be short, perhaps on the order of an hour.

The VPMK specifies the circuit’s exposure time against compromises of the (dis-
tributed) PKG which reveal the master secret s. Because changing s involves
the participation of all of the ORs as well as the PKGs, we suggest the VPMK be
somewhat longer than the VPPK, perhaps on the order of a day.2 Remember that
in the t of m distributed PKG, if at least m − t PKG members are honest and
not compromised, no one will ever learn the value of a master secret.

4.2.2 Protocol Description. As discussed before, we propose the use of a
distributed PKG, but for simplicity, our discussion will consider the PKG to
be a single entity. Using a distributed PKG affects only the setup and key
generation steps.

Setup. Given the security requirements, the PKG generates a digital sig-
nature key pair (for any secure digital signature scheme). It also generates a
prime n, two groups G (written additively) and GT (written multiplicatively)
of order n and a bilinear map e : G × G → GT . Finally, the PKG chooses a
full-domain cryptographic hash function H : {0, 1}∗ → G∗. The PKG publishes
all of these values except its private signature key.

2Note that VPMK and VPPK both are deployment parameters and do not affect the security analysis.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



29: 14 · A. Kate et al.

Key Generation. During the key generation step, the PKG performs follow-
ing steps.

(1) For each VPMK, the PKG generates a random master key s ∈ Z∗
n and a random

U ∈ G, and calculates sU. The PKG publishes a signed copy of (vm,U, sU),
where vm is a timestamp for the VPMK in question. This triple is to be shared
by all users of the system.

(2) For every valid OR with identity ORi, and for every VPPK v that overlaps
with the VPMK, the PKG generates the private key dv,i = sH(v||ORi), where ||
represents the usual concatenation operation.

(3) The PKG distributes these private keys, as well as the signed copy of
(vm,U, sU), to the appropriate ORs over a secure authenticated forward-
secret channel. If an OR becomes compromised, the PKG can revoke it by
simply no longer calculating its values of dv,i.

Note that this key distribution can be batched; that is, the PKG can precom-
pute the master keys and private keys in advance (say a week at a time), and
deliver them to the ORs in batches of any size from one VPPK at a time on up.
This batching reduces the amount of time the PKG has to be online, and does
not sacrifice forward secrecy. On the other hand, large batches will delay the
time until a revocation becomes effective.

User Setup. Once during each VPMK, every user has to obtain the signed triple
(vm,U, sU) from any OR or from a public Web site. Once during each VPPK, every
user has to compute the following pairing for each OR i and store the results
locally.

γv,i = e(sU, Qv,i) = e(U, Qv,i)s where Qv,i = H(v||ORi)

Circuit Construction. During a VPPK v, a user U chooses � ORs (say
OR1, OR2, . . . , OR�) and constructs a circuit U ⇔ OR1 ⇔ OR2 ⇔ · · · ⇔ OR� with
the following steps.

(1) For each ORi in the circuit, the user generates a random integer ri ∈ Z∗
n

and computes the pseudonym PUi = riU and the value γv,i
ri = e(U, Qv,i)sri.

From γv,i
ri two session keys are derived: a forward session key KU,i and a

backward session key Ki,U. Finally, the following onion is built and sent to
OR1, the first OR in the circuit.

r1U, {OR2, r2U, {· · · {OR�, r�U, {∅}KU,�
} · · · }KU,2}KU,1 (1)

Here {· · · }KU,i is symmetric-key encryption and ∅ is an empty message which
informs OR� that OR� is the exit node.

(2) After receiving the onion, the OR with identity ORi uses the received riU
and its currently valid private key dv,i to compute e(riU, dv,i) = e(U, Qi)ris =
γv,i

ri. It derives the forward session key KU,i and the backward session key
Ki,U . It decrypts the outermost onion layer {· · · }KU,i to obtain the user’s next
pseudonym, the nested ciphertext, and the identity of the next node in the

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



Pairing-Based Onion Routing with Improved Forward Secrecy · 29: 15

Fig. 1. A user builds a circuit with three ORs.

circuit. The OR then forwards the pseudonym and ciphertext to the next
node. To avoid replay attacks, it also stores pseudonyms (see Section 7).
The process ends when an OR (OR� in this case) gets ∅.

(3) The exit node OR� sends a confirmation message encrypted with the back-
ward session key {Confirm}K�,U to the previous OR in the circuit. Each OR
encrypts the confirmation with its backward session key and sends it to
the previous node, until the ciphertext reaches the user. The user decrypts
the ciphertext layers to verify the confirmation.

(4) If the user does not receive the confirmation in a specified time, she selects
a different set of ORs and repeats the protocol.

The circuit construction is further illustrated in Figure 1, where a user builds
a three-node circuit.

Anonymous Communication. After the circuit is constructed, communica-
tion proceeds in the same manner as in Tor. The user sends onions through
the circuit with each layer encrypted with the forward keys KU,i, and each hop
decrypts one layer. Replies are encrypted at each hop with the backward key
Ki,U , and the user decrypts the received onion.

Note that as an optimization, one or more messages can be bundled inside
the original circuit construction onion, in place of ∅.

We analyze the security for the preceding protocol in Section 6.

4.3 Advantages Over First-Generation Onion Routing

As discussed earlier, it is possible to achieve forward secrecy in first-generation
onion routing by periodically replacing the public-private key pairs of the ORs.
Following the change, the service provider publishes signed copies of the new
OR public keys after getting authentic copies from the ORs. However, this re-
quires all users to regularly obtain fresh authenticated public key information
for all ORs.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



29: 16 · A. Kate et al.

In contrast, with our system, each user only needs to obtain the single au-
thenticated value (vm,U, sU), and only once every VPMK. The user can then cal-
culate the required γv,i values on her own until the end of that period, thus
reducing the load on the service provider. This load is further reduced by hav-
ing the service provider never communicate directly with users at all, but only
with the ORs.

As a consequence, our pairing-based onion routing is a more practical solu-
tion for low-latency anonymous communication.

4.4 Advantages Over Telescoping in Tor

The Tor network, in practice, uses the telescoping approach based on the Diffie-
Hellman key exchange to form an anonymity circuit. We find the following
advantages for our protocol over the telescoping approach.

—Although the protocol defined in Section 4.2.2 requires occasional private
key generation for ORs to achieve forward secrecy, it saves communication
cost at every circuit construction by avoiding telescoping. We discuss our
communication and computational advantages in Section 8.5.

—The absence of telescoping in our protocol provides flexibility to the user to
modify a circuit on-the-fly. For example, suppose a user U has constructed
a circuit (U ⇔ OR1 ⇔ OR2 ⇔ · · · ⇔ ORi ⇔ · · · ⇔ OR�). In our protocol,
she can bundle instructions to immediately replace ORi with OR′

i in the next
message, while keeping the remaining circuit intact. Her circuit would then
be (U ⇔ OR1 ⇔ OR2 ⇔ · · · ⇔ OR′

i ⇔ · · · ⇔ OR�).

4.5 Issues with the Proposed Scheme

The certifying authorities in the Tor system need to be less trusted than the
PKG in our scheme. It is also possible for t + 1 malicious PKGs to passively
listen to all of the traffic as they can compute private keys for all ORs. A
geographically distributed implementation of m PKGs under politically diverse
ownerships can certainly reduce this possibility.

To passively decrypt an OR’s messages, an adversary of the Tor system must
know the OR’s private key, as well as the current Diffie-Hellman key (estab-
lished for each circuit). In our scheme, as it is noninteractive, an adversary
who knows only the OR’s private key can decrypt all of the messages for that
OR. This may be an acceptable trade-off, considering the advantages gained
from the noninteractive protocol.

Further, this onion routing circuit construction provides forward secrecy,
only after ORs’ private keys are rotated. In other words (as defined by Øverlier
and Syverson [2007]), it only provides eventual forward secrecy rather than im-
mediate forward secrecy. Consequently, it has shorter VPPK as compared to the
key replacement period in Tor and PKGs (any t + 1 of them) need to be online
with greater reliability. If fewer than t + 1 PKGs are available, the whole sys-
tem is paralysed after the current batch. In the next section, we resolve this
issue, without a significant increase in circuit construction time, by introducing
a partially interactive onion routing circuit construction.
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



Pairing-Based Onion Routing with Improved Forward Secrecy · 29: 17

5. λ-PASS ONION ROUTING

Tor achieves immediate forward secrecy using telescoping. Telescoping can also
be considered as an �-pass circuit construction, where � is the circuit length,
with immediate forward secrecy at each of the OR nodes. In practice, however,
it is sufficient to have immediate forward secrecy at fewer than � nodes, as an
adversary will be stymied when it encounters any such node. In this section,
we define λ-pass onion routing circuit construction which achieves immediate
forward secrecy at λ nodes (for 2 < λ ≤ �) with reduced circuit construction cost
over telescoping.

5.1 Impossibility of Immediate Forward Secrecy in Single-Pass
Circuit Construction

To motivate multiple-pass circuit construction, we will describe why it is impos-
sible to obtain immediate forward secrecy in any single-pass circuit construc-
tion, regardless of the cryptographic setting.

In an immediately forward secret circuit construction, compromise of OR
private keys after a circuit is built should not allow any information about the
circuit path to be recovered. Further, after the circuit is destroyed and the
keys are dropped, it should not be possible for any honest user and an OR to
recompute their shared keys for that session. To achieve these properties, both
parties must contribute some randomness to the creation of the the session key
and they must drop these random values once the session keys are generated.
Consequently, before the user can generate the forward session key, the ran-
dom values (in some modified form) have to be exchanged between the user
and the OR. The modified forms should enable only the authentic receiver to
compute the session key. In an immediate forward secret circuit construction
like Tor, these session-dependent random values are realized using the Diffie-
Hellman exponents (x, y), while the Diffie-Hellman parameters (gx, gy) provide
the publicly exchanged forms of the randomness.

In any single-pass circuit construction, an OR does not reply immediately
after receiving an onion (except for exit nodes). Therefore, addition of any ran-
domness from the OR in the forward session key is not possible, before that
session key can be used to convey the OR its successor. Consequently, any time
later in the same VPPK, an adversary can compromise the OR, use the OR’s pri-
vate key to generate the session keys, and exploit those to find the next node
in the circuit path. Further, although it is possible for nodes to send their part
of randomness for session keys along with the (backward) confirmation onion,
this does not provide any advantage as the adversary can always find the cir-
cuit path by decrypting the forward onion. Thus we see that it is not possible
to obtain immediate forward secrecy in a single-pass circuit construction.

5.2 λ-pass Circuit Construction

As replies from the last node of single-pass circuit constructions are direct,
immediate forward secrecy is easy to achieve at this node. Here, we consider
λ − 1 additional single-pass circuit constructions to achieve immediate forward

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



29: 18 · A. Kate et al.

secrecy at λ nodes. We note that Øverlier and Syverson [2007, Protocol 3] pro-
pose a similar circuit construction, but their focus is on dealing with replay
attacks. Our λ-pass protocol adds message flows to provide partial immediate
forward secrecy, whereas their protocol uses an increased number of flows to
prevent replay of construction onions.

5.2.1 Protocol Description. Although our λ-pass circuit construction can be
applied in any public-key setting, for simplicity, here we present it for pairing-
based onion routing, as defined in Section 4.

Setup, Key Generation, User Setup. These are as described in Section 4.2.2.

Circuit Construction. During a VPPK v, a user U chooses a set of ORs (say
OR1, OR2, . . . , OR�) and constructs a circuit U ⇔ OR1 ⇔ OR2 ⇔ · · · ⇔ OR� with the
following steps.

(1) The user selects λ indices �1 < �2 < · · · < �λ−1 < �λ = �.
(2) As in Section 4.2.2, for each ORi in the circuit, the user generates a random

integer ri ∈ Z
∗
n and computes the pseudonym PUi = riU and the value γv,i

ri =
e(U, Qv,i)sri. From γv,i

ri two session keys are derived: a forward session key
KU,i and a backward session key Ki,U . At this stage, the user erases the
random values ri for all but r�1 , r�2 , . . . , r�λ

.
(3) The user then creates the following onion and sends it to OR1.

r1U, {OR2, r2U, {· · · {OR�1, r�1U, {∅}KU,�1
} · · · }KU,2}KU,1

Here {· · · }KU,i is symmetric-key encryption and ∅ is an empty message which
informs OR�1 that it is the exit node.

(4) Each node ORi with i ≥ 1, uses riU and its currently valid private key dv,i

to compute e(riU, dv,i) = e(U, Qi)ris = γv,i
ri. It derives the forward session

keys KU,i and the backward session keys Ki,U . It decrypts the outermost
onion layer {· · · }KU,i to obtain the user’s next pseudonym, the nested cipher-
text, and the identity of the next node in the circuit. The OR then forwards
the pseudonym and ciphertext to the next node. To avoid replay attacks,
it also stores pseudonyms (see Section 7). The process ends when OR�1

gets ∅.
(5) The last node in the partial circuit OR�1 generates a random integer rU1 ∈

Z∗
n, and computes a pseudonym rU1 Qv,�1 . It then generates γ

r�1
v,�1

rU1 , de-
rives modified forward and backward session keys (K∗

U,�1
and K∗

�1,U ), and
sends a confirmation message encrypted with the backward session key
{Confirm}K∗

�1,U
along with the pseudonym rU1 Qv,�1 to the previous OR in

the circuit. To obtain immediate forward secrecy, it also erases the random
integer rU1 and the value γ

r�1
v,�1

rU1 right away, and will erase K∗
U,�1

and K∗
�1,U

immediately after the circuit is no longer in use.
(6) Each OR encrypts the confirmation with its backward session key and

sends it to the previous node, until the ciphertext reaches the user. The
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



Pairing-Based Onion Routing with Improved Forward Secrecy · 29: 19

Fig. 2. A user builds a circuit with four ORs and λ = 3.

user decrypts the ciphertext layers to verify the confirmation and in the
process, generates the modified session keys for OR�1 using the received
pseudonym rU1 Qv,�1 and the stored random value r�1 . After this, the user
drops the random value r�1 .

(7) Now, the partial circuit U ⇔ A · · · ⇔ OR�1 is used to extend the circuit to
OR�2 by sending the following onion to OR1.

{{· · · {OR�1+1, r�1+1U,{· · · {OR�2 , r�2U,{∅}KU,�2
} · · · }KU,�1+1}K∗

U,�1
· · · }KU,2}KU,1

(8) The user completes λ passes to construct the complete circuit U ⇔ OR1 ⇔
OR2 ⇔ · · · ⇔ OR�.

(9) If the user does not receive any of the λ confirmations in specified times,
she selects a different set of ORs and repeats the protocol.

Anonymous Communication. As described in Section 4.2.2.
This circuit construction is further illustrated in Figure 2, where a user

builds a four-node circuit with λ = 3.
We observe that the security and anonymity properties of this protocol are

straightforward extensions to those of our single-pass construction in Section
4; we elaborate on security in Section 6.

5.2.2 Value of λ and Node Placement. For λ = �, the aforesaid circuit be-
comes a telescoping circuit construction. Øverlier and Syverson [2007] observe

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



29: 20 · A. Kate et al.

that, in Tor, there is always forward secrecy at the entry node, as the link
between the user and the entry node in the circuit is encrypted using TLS.
Therefore, our circuit construction defined in Section 4, without any signifi-
cant modification, can easily be a 2-pass circuit construction having immediate
forward secrecy at the entry node and the exit node.

Considering an adversary who controls some of the OR network (but not
all, as in our threat model, Section 4.1), it is certainly advantageous to keep
2 < λ ≤ �. We observe that for Tor, with a network of more than a thousand
nodes, assuming a nonglobal and nonadaptive adversary, with access to an in-
frequently changing small part of the network, it is sufficient to have λ = 3; that
is, immediate forward secrecy at the entry node, exit node, and one of the nodes
in between. In this case, after the circuit is closed, the adversary’s successive
compromise of the ORs in a circuit is thwarted once it reaches the immediate
forward secret node. In other words, assuming that the adversary has access
to a few ORs in a circuit and can compromise all others in the network in the
future, it still cannot link the two parts of the circuit divided at the immediate
forward secret node.

However, for a stronger adversary, a larger value of λ is required. As an
example, assume a similar network with 1000 nodes, of which 100 are compro-
mised by a nonglobal but mobile adversary which adaptively modifies its set of
compromised nodes at a very fast rate of one node per ten minutes. Similar to
Tor, if users here change their onion routing circuits every ten minutes, then
λ = 6 should be sufficient. With probability less than 0.01, even if the adversary
owns two out of six immediate forward secret nodes and compromises one more
while the circuit is still functioning, at least one immediate forward secret node
other than the entry and the exit nodes will remain uncompromised until the
circuit is closed and provide the necessary unlinkability.

An immediate question is the placement of the immediate forward secret
nodes in the circuit path. It is easy to observe that a circuit with two adjacent
immediate forward secret nodes is more difficult to attack using traffic analysis
than one where those two nodes are separated. Further, as the ultimate goal of
onion routing is anonymity for the sender and receiver, it is good to have imme-
diate forward secret nodes at the start and at the end of the circuit. Therefore,
we suggest 
λ/2� immediate forward secret nodes at the start of the circuit and
remaining �λ/2� immediate forward secret nodes at the end of the circuit. In
cases when the recipient does not require anonymity (e.g., it is a Web server),
the efficiency of the construction can be improved by placing the first λ−1 nodes
closest to the sender; that is, by selecting �i = i for 1 ≤ i ≤ λ − 1 and �λ = �. An
attacker who observes the onion past the last forward secret node may be able
to decrypt the remaining layers, but the first λ − 1 forward secret nodes have
already provided anonymity for the sender.

Once the random parameters rUi and r�i are dropped by the OR�i and the user
U respectively, deriving their session keys becomes the BDH problem, even
if OR�i gets compromised during the VPPK. Therefore, we achieve immediate
forward secrecy at λ ORs and the VPPK could be longer, or made equal to the
VPMK. The latter would also eliminate the need to attach validity periods to OR
identities.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



Pairing-Based Onion Routing with Improved Forward Secrecy · 29: 21

6. SECURITY ANALYSIS

Camenisch and Lysyanskaya [2005] give a protocol for onion routing with
provable security in the Universal Composability (UC) model Canetti [2001].
The UC model imposes additional overhead on their protocol. We aim for a
simpler and more efficient protocol at the expense of provability in the UC
model. Nevertheless, we prove some security properties of our protocol. Here
is a list of the properties we consider; detailed definitions will follow.

—Cryptographic unlinkability. This property ensures that a circuit, which has
at least one honest node, provides unlinkability between a sender and a re-
ceiver. This property allows us to use a strong attack model; anonymity is
still possible when the adversary controls all but one of the routers in the
path. By the term cryptographic unlinkability we exclude network-level link-
ing attacks.

—Integrity and correctness. These properties are defined by Camenisch and
Lysyanskaya [2005]. An onion routing scheme has the correctness property
if a message reaches the intended recipient whenever the an onion is (i)
formed correctly, (ii) processed by the right routers in the right order, and
(iii) these routers follow the protocol. Integrity is achieved if onions longer
than some upper limit on the length can be recognized by routers. We
observe that our circuit construction trivially achieves these correctness and
integrity properties.

—Key secrecy. An attacker controlling all but one honest node in a circuit
should not be able to recover the secret key shared between the user and
the honest node. Since this is effectively a run of the protocol in Section 3.2
between the user and the honest node, the security proof in Section 3.3.2
applies here as well.

—Circuit position secrecy. Other works on the subject [Camenisch and Lysyan-
skaya 2005; Möller 2003] desire the following property, which we term
circuit position secrecy. When a router receives an onion, it should not be
possible for it to learn which position it has in a circuit (unless it is the entry
or exit node). We discuss how to provide circuit position secrecy.

Note that when proving security using the previous properties, our λ-pass
circuit construction in Section 5.2 can be considered equivalent to λ passes of
our single-pass circuit construction protocol. Therefore, we do not consider it
separately in our security discussion.

6.1 Cryptographic Unlinkability

Suppose an adversary controls all routers in a circuit of length � except for one
honest router, H. By collapsing the adversarial routers into a single entity, we
can distill this scenario into

User U → A1 → H → A2 → Recipient R,

where nodes A1 and A2 are controlled by the adversary. When U sends an
onion to A1, it is processed and forwarded to H who processes it and forwards
it to A2. If A2 can determine that the onion received from H was also processed

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



29: 22 · A. Kate et al.

by A1, then U and R can be linked. Traffic analysis and timing/correlation
attacks may be able to link U and R, but in this section we show that there is
no cryptographic linking possible.

When there are multiple users in the system (a basic assumption for all
anonymity systems), the problem can be illustrated as follows.

U → A1 A2 → R
↘
↗ H ↗

↘
U ′ → A ′

1 A ′
2 → R′

We will show that this problem is equivalent to distinguishing ciphertexts.
The situation depicted before is captured by the following security game,

which we call the cryptographic unlinkability game.

Setup. The challenger C performs the setup described by
the onion routing protocol. The adversary A chooses
m, IDA1, IDA ′

1
, IDA2 , IDA ′

2
, IDH. C sends the private keys for

IDA1, IDA ′
1
, IDA2, IDA ′

2
, to A. It is assumed that router identities

are of a fixed length to avoid attacks based on the ciphertext sizes.
Create onions. The challenger chooses b ∈ {0, 1} at random.

If b = 0, C sends to A:

O1 for circuit U → A1 → H → A2

= IDA1, rA1U, {IDH, rHU, {IDA2, rA2U, {m}KU,A2
}KU,H }KU,A1

O ′
1 for circuit U → A ′

1 → H → A ′
2

= IDA ′
1
, rA ′

1
U, {IDH, r′

HU, {IDA ′
2
, rA ′

2
U, {m}KU,A′

2
}KU,H′ }KU,A′

1

and if b = 1, C sends to A:

O1 for circuit U → A1 → H → A ′
2

= IDA1, rA1U, {IDH, rHU, {IDA ′
2
, rA ′

2
U, {m}KU,A′

2
}KU,H }KU,A1

O ′
1 for circuit U → A ′

1 → H → A2

= IDA ′
1
, rA ′

1
U, {IDH, r′

HU, {IDA2, rA2U, {m}KU,A2
}KU,H′ }KU,A′

1
.

A1 processing. The node A1 processes the onions O1 and O ′
1 before

passing them along to H (A1 may or may not follow the pro-
tocol). The resulting onions OH and O ′

H respectively are then
returned to C.

H processing. C removes the layer encrypted for H. If the decryptions
are invalid the game is aborted (C will know since it created the
onions). If the decryptions are valid, C returns the resulting
O2, O ′

2 to A. Here, O2 and O ′
2 are the output onions destined for

A2 and A ′
2 respectively.

Guess. A must determine which input onion corresponds to which
output onion by outputting a guess bit b ′. We say that the
adversary A (t, ε)-wins the game if A outputs b ′ in time t such
that Pr[b ′ = b ] = 1/2 + ε .

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



Pairing-Based Onion Routing with Improved Forward Secrecy · 29: 23

Winning this cryptographic unlinkability game can be reduced to distin-
guishing ciphertexts. To prove this, we first present the IND-CPA game for
(indistinguishability in a chosen plaintext attack).

Setup. Let EK be a symmetric encryption function which uses key K.
C chooses K at random from the keyspace associated with E.

Extraction Queries An adversary AIND-CPA is given oracle access to
EK . She can obtain ciphertexts for polynomially bounded num-
ber of plaintext messages of her choice any time during the game.

Challenge. The AIND-CPA chooses two equal length plaintexts m0, m1,
and sends them to C. C chooses b ∈ {0, 1} at random, and sends
EK(mb ) to AIND-CPA.

Guess. AIND-CPA outputs a guess b ′ ∈ {0, 1}. We say that AIND-CPA
(t, ε)-wins the IND-CPA game if AIND-CPA returns b ′ in time t such
that Pr[b = b ′] = 1/2 + ε.

A similar game, which we call the simultaneous-IND-CPA (s-IND-CPA)
game, arises from the cryptographic unlinkability problem described earlier.

Setup. Let EK be an encryption function which uses key K. C chooses
K1, K2 at random from the keyspace associated with E.

Extraction Queries. An adversary As-IND-CPA is given oracle access to
EK1 and EK2 . She obtains ciphertexts for a polynomially bounded
number of plaintext messages of her choice any time during the
game.

Challenge. As-IND-CPA chooses equal length plaintexts m0, m1, and
sends them to C. C chooses b ∈ {0, 1} at random, and sends
EK1 (mb ) and EK2 (m1−b ) to As-IND-CPA.

Guess. As-IND-CPA outputs a guess b ′ ∈ {0, 1}. We say that As-IND-CPA
(t, ε)-wins the s-IND-CPA game if As-IND-CPA returns b ′ in time t
such that Pr[b = b ′] = 1/2 + ε.

We say an encryption function E is (s-)IND-CPA if for any adversary A
which (t, ε)-wins the (s-)IND-CPA game, ε is negligible if t is polynomial.

LEMMA 1. If E is a family of pseudorandom permutations, then E is IND-
CPA if and only if it is s-IND-CPA.

PROOF. First assume an adversary AIND-CPA, which can (t, ε)-win an IND-
CPA game (m0, m1, EK(mb )). Given an access to such an adversary, an
s-IND-CPA game (m0, m1, EK1 (mb ), EK2 (m1−b )) can be (t, ε)-won simply by
sending the query (m0, m1, EK1 (mb )) to the adversary AIND-CPA. Therefore, E is
s-IND-CPA ⇒ E is IND-CPA.

Now assume E is a family of pseudorandom permutations and is IND-CPA,
and suppose there is an adversary As-IND-CPA, which (t, γ )-wins the simultan-
eous-IND-CPA game (m0, m1, EK1 (mb ), EK2 (m1−b )) for nonnegligible γ . For an
IND-CPA input (m0, m1, EK (mi)), we present As-IND-CPA with the s-IND-CPA
instance (m0, m1, EK(mi), $) where $ is a random string of length |EK(mi)|, and
with oracle access to EK2 for a randomly chosen key K2. Suppose As-IND-CPA
returns i with probability 1/2 + κ . It follows that As-IND-CPA can be used to

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



29: 24 · A. Kate et al.

distinguish encryptions of E with key K2 from randomly chosen strings with
probability 1/2+μ, where μ = |γ −κ |. Since E is assumed to be a pseudorandom
permutation, μ must be negligible, and κ ≥ γ −μ. Therefore, E is IND-CPA ⇒
E is s-IND-CPA.

THEOREM 2. If E is a family of pseudorandom permutations which is IND-
CPA, then for any adversary which (t, ε)-wins the cryptographic unlinkability
game, if t is polynomial, then ε is negligible.

PROOF. Suppose A is playing the unlinkability game; we focus on the Guess
step. A has OH and O ′

H (the onions processed by C), which are not encryptions
of m (which he chose), but encryptions M1 = {m}KU,A1

and M2 = {m}KU,A2
known

to A. This gives us an instance of s-IND-CPA except A did not get to choose
the messages. If A (t, ε)-solves this instance for nonnegligible ε, A can certainly
(t, ε)-solve instances where A chooses M1, M2. By Lemma 1 A solves an in-
stance of IND-CPA as well.

Therefore, if our encryption function is indistinguishable in a chosen plain-
text attack, then our onion routing protocol has cryptographic unlinkability (in
our model of multiple users and one honest router per circuit). Since key se-
crecy is proven for our construction, any symmetric key encryption which pro-
vides indistinguishability given key secrecy will give our protocol cryptographic
unlinkability.

6.2 Circuit Position Secrecy (CPS)

We now treat the issue of preventing routers from learning their positions in
a circuit. In our model, since users will typically not be routers in the system,
routers may check if they are in the first position by determining whether the
sender is a nonrouter. Similarly for the last router, since the destination will
rarely be a router in the network.

Note that an adversary who controls all but one router in a circuit and who
knows the circuit length is always able to deduce which position his routers
have in some circuit. The best possible outcome with respect to CPS is that
adversarial nodes “sandwiched” between two honest nodes learn nothing about
their position.

The circuit construction protocol given (Sections 4.2.2 and 5.2) does not pro-
vide CPS, since the size of the onion changes after each step of processing.
Using ideas from the construction of Camenisch and Lysyanskaya [2005] we
may enhance our new circuit construction to provide CPS. We describe the
changes to the protocol of Section 4.2.2 (this is the simplest case λ = 1).
The symmetric key cipher used will be the pseudorandom permutation (PRP)
E : {0, 1}�k × {0, 1}�E → {0, 1}�E , where 2�k is the size of the keyspace and 2�E is
the size of the message space and ciphertext space. Recall that κ is a security
parameter. The notation x ∈R S means x is chosen uniformly at random from
the set S.
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



Pairing-Based Onion Routing with Improved Forward Secrecy · 29: 25

We modify the construction of the onion from Eq. (1) as follows. Set

y1 = {0κ, OR2, r2U}KU,1

y2 = {{0κ, OR3, r3U}KU,2}KU,1

...
...

y�−1 = {. . . {0κ, OR�, r�U}KU,�−1 . . .}KU,1

y� = {. . . {0κ,∅}KU,�
. . .}KU,1

We will denote the �-tuple (y1, . . . , y�) by Y . The user now chooses π , a ran-
dom permutation of {1, . . . , �}, and sends the onion (r1U, (yπ (1), . . . , yπ (�))) to
OR1. The reason for including κ zeros at the beginning of each plaintext is to
allow routers to distinguish plaintexts from nested ciphertexts and invalid de-
cryptions. Since E is a PRP, if a ciphertext c is modified, the probability that
E−1(c) begins with κ zeros is 1/2κ . All � plaintexts must have the same length
(�E bits), and are padded if necessary.

The processing step must also be changed. Upon receiving (riU, Y ) from ORi−1
(or the user, when i = 1), ORi performs the following steps.

(1) Verify that riU ∈ G. Use riU to derive KU,i and Ki,U (as before).
(2) For j = 1, . . . , �, decrypt y j using KU,i. yπ (i) will decrypt to 0κ, ORi+1, ri+1U.

The item yπ (i) is replaced by y′ ∈R {0, 1}�E , and ri+1U replaces riU. ORi

forwards

(ri+1U, (y1, . . . , y′, . . . , y�))

to ORi+1. The index π(i) is kept for the duration of the circuit.
(3) If, in the previous step, yπ (i) decrypts to ∅, this node is the exit node, OR�. OR�

replaces yπ (�) with {Confirm}K�,U , sets the other � − 1 values of Y to random
elements of {0, 1}�E , and sends (r′

�, Y ) to OR�−1 where r′
� ∈R G. Along the

return path, ORi, replaces yπ (i) with {Confirm}Ki,U , encrypts the other values
in Y with Ki,U , and replaces r′

i+1 with r′
i ∈R G. ORi sends (r′

i, Y ) to ORi−1.

On the return path, the only purpose the random group elements r′
i serve is to

provide indistinguishability between the forward and backward portions of the
construction. The anonymous communication step is unchanged.

We now prove CPS for the modified construction.

THEOREM 3. Let A be a polynomially bounded adversary at position i, who
receives onion Oi in the modified onion routing protocol defined before. Let X be
a random variable defined on {2, . . . , � − 1}, the set of possible positions for A.
If E is a family of PRPs which is IND-CPA secure, and nodes i − 1 and i + 1 are
honest, then Pr[X|Oi] is computationally indistinguishable from Pr[X].

PROOF. We proceed by showing that A cannot extract any information from
Oi which may help determine i. We may assume that ORi−1, who is honest, will
drop any malformed traffic, and output Oi with the correct form: an element of
G × ({0, 1}�E )�. Therefore the lengths of values in Oi will not leak information
about i. Each router learns π(i), but since π is chosen uniformly at random,
and independently of i, A learns no information about i from π(i). Second,

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



29: 26 · A. Kate et al.

the decryption of yπ (i) contains no information about i, since it was created by
the user, who is honest. What remains to show is that the values riU, Y −
(yπ (i)) give no information to A, which we do by showing that riU, Y − (yπ (i)) is
computationally indistinguishable from a random element of G × ({0, 1}�E )�−1.
We are assured that riU is a random element of G, since it was chosen by
the user, and not modified by ORi−1, since ORi−1 is honest. Similarly, yπ (i−1)
is a random value of {0, 1}�E , since ORi−1 follows the protocol. The remaining
values in Y have had E−1

KU,(i−1)
applied to them, to give two possibilities. If y j

was honestly processed before reaching ORi−1, A may remove layer i, but in
all j �= π(i) we can be sure that either this was randomized (in positions π(k)
for k < i − 1) or that at least the (i + 1)-th layer of encryption remains (in
positions π(k) for k > i). Since ORi+1 is honest, A does not have KU,(i+1), hence
these positions are indistinguishable from random to A (since E is IND-CPA
secure). In the second case, y j was dishonestly processed before reaching ORi−1

and E−1
KU,(i−1)

(y j) arrives at ORi. Again, since E is a PRP which is IND-CPA secure,
this is indistinguishable from a random value in {0, 1}�E .

Finally, since ORi+1 and ORi−1 are honest, they will not collude with A to help
A learn i (for instance, by sharing any knowledge they have of i + 1, i− 1).

By similar arguments we may show that by observing the links between
OR1 ↔ OR2 ↔ . . . ↔ OR� it is impossible for a polynomial-time adversary to dis-
tinguish the forward part of the construction from the reverse part. To handle
the case when λ > 1, the aforesaid construction may be used as is with |Y | = �.
During the anonymous communication step, the size of the onion is unchanged
at each hop, and only the exit node learns anything from the contents.

7. SYSTEMS ISSUES

In this section, we describe how components of an onion routing system such
as Tor would function in a pairing-based setting. To implement pairings, we
must choose groups where pairings are known, and are efficiently computable.
Once these groups are fixed we can estimate the computational cost required
to construct a circuit. The next section will compare the costs of our schemes to
the cost of setting up a circuit in Tor.

PKG. As discussed in Section 3.4, the PKG should be distributed across
servers run by independent parties. To provide robustness, a “t of m” secret
sharing scheme may be employed; this would mean that an OR need only con-
tact t + 1 of m “pieces” of the PKG to learn its complete private key. Naturally,
private key information must always be communicated over a secure channel.
We note that end users of the system will have no reason to contact the PKG;
the PKG only communicates with ORs, and sends one private key (an element
of G) per VPPK to each. The load on the PKG should therefore be quite manage-
able. For added protection from attack, the PKG could even situate itself as
a “hidden service” [Dingledine et al. 2004, Section 5], so that only known ORs
could even connect to it, and no one would know where many of the pieces were
located.
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



Pairing-Based Onion Routing with Improved Forward Secrecy · 29: 27

Channel Security. The security and forward secrecy depends on the chan-
nel between the PKG and the OR used to compute the private key. With a
nondistributed PKG, an attacker can compromise an OR’s private key by com-
promising this channel. The distributed PKG provides robustness here as well,
since the attacker must subvert t+ 1 secure channels to reconstruct the private
key from the shares.

Onion Router Identities. Users calculate γv,i based on each router’s identity
IDi. This identity can be as simple as a port number and a hostname or IP
address. In that case, the BF-IBE setup ensures that if a user knows how to
contact an OR, she automatically knows its public key.

The value γv,i is also based on the current VPPK v. To avoid requiring tight
synchronization between the clocks of ORs and users, ORs should keep their
private keys dv,i around for a short time after the official end of the VPPK, but
must securely discard them after that.

Replay Prevention. To avoid attacks where adversaries replay old circuit
construction onions, ORs should store the pseudonyms they receive for the du-
ration of a VPPK and drop onions which reuse a pseudonym. After circuit con-
struction, replay attacks can be prevented with existing methods [Dingledine
and Mathewson 2008].

Directory Servers. Directory servers can be used to provide signed informa-
tion about the list of available ORs to the users of the system. The directory
servers in Tor, for example, provide a list of the ORs along with their public
keys, status, capabilities, and policies. In our pairing-based setting, of course,
the public keys are unnecessary.

8. PERFORMANCE

In this section, we consider the cost of single-pass and λ-pass circuit construc-
tions from a user through � onion routers. We estimate the computational cost,
and count the number of AES-encrypted network communications. We compare
the performance of our systems to that of Tor.

8.1 Security Levels and Parameter Sizes

Before comparing the costs of the cryptography in the schemes we determine
the parameter sizes required to provide the same level of security currently
provided by Tor.

Tor uses public key parameters to provide security at the 80-bit level
[Goldberg 2006]. The discrete log problem is in a 1024-bit field, and the RSA
problem uses a 1024-bit modulus. The symmetric parameters provide signifi-
cantly more security, by using AES with a 128-bit key.

We must choose appropriate groups G and GT over which our pairing will
be defined in order to offer similar strength. The current favourite choice is
the group of torsion points of an elliptic curve group over a finite field, with
either the Weil or Tate pairing. To achieve an 80-bit security level, the elliptic
curve discrete log problem an attacker faces must be in a group of at least

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



29: 28 · A. Kate et al.

160 bits. Due to the reduction of Menezes et al. [1991], we must also ensure
that discrete logs are intractable in the target group, GT . In our case, GT = Fpk ,
where k is the embedding degree of our curve taken over Fp. We must then
choose our curve E, a prime p, and embedding degree k such that E(Fp) has
a cyclic subgroup of prime order n ≈ 2160, and pk is around 21024. This can
be achieved in a variety of ways, but two common choices are k = 2, p ≈ 2512

and k = 6, p ≈ 2171. Pairing implementations with both sets of parameters are
available in the PBC library [Lynn 2008]. Efficiency studies suggest that k = 2
and the Tate pairing can offer better performance at this security level [Koblitz
and Menezes 2005], so we make that choice.

8.2 Cost of Building a Circuit with Tor

Tor builds circuits by telescoping. A user Uriel chooses a Tor node (say Alice),
and establishes a secure channel using an encrypted Diffie-Hellman exchange.
She then picks a second node, Bob, and over this secure channel, establishes a
new secure channel to Bob with another (end-to-end) encrypted Diffie-Hellman
exchange. She proceeds in this manner until the circuit is of some desired
length �. For details, see the Tor specification [Dingledine and Mathewson
2008]. Note that Uriel cannot use the same Diffie-Hellman parameters with
different nodes, lest those nodes be able to determine that the same user was
communicating with each of them.

Each Diffie-Hellman exchange requires Uriel to perform two modular expo-
nentiations with 1024-bit moduli and 320-bit exponents. Likewise, each server
also performs two of these exponentiations. Uriel RSA-encrypts the Diffie-
Hellman parameter she sends to the server, and the server decrypts it. The
AES and hashing operations involved have negligible costs compared to these.

Uriel’s circuit construction to Alice takes two messages: one from Uriel to
Alice, and one from Alice to Uriel. When Uriel extends this circuit to Bob
(via Alice), there are four additional messages: Uriel to Alice, Alice to Bob, Bob
to Alice, and Alice to Uriel. Continuing in this way, we see that the total num-
ber of messages required for Tor to construct a circuit of length � is �(�+1). Note
that each of these messages needs to be encrypted and decrypted at each hop.

8.3 Cost of Building a Circuit with Pairing-Based Onion Routing

In order to create a circuit of length � with our single-pass circuit construc-
tion, the user Uriel must choose � random elements ri of Z∗

n. As before, Uriel
should not reuse these values. She then computes rSU and γS

rS, and derives
the forward and backward keys KU,S and KS,U from γS

rS, for each server S in
the circuit. Note that the γS values were precomputed, and cost nothing dur-
ing each circuit creation. Each server computes e(rSU, dS) = γS

rS for its current
private key dS and derives KU,S and KS,U .

Uriel creates one message, as in Figure 1, and sends it to the first server
in the chain. This server decrypts a layer and sends the result to the second
server in the chain, and so on, for a total of � hop-by-hop encrypted messages.
At the end of the chain, the last server replies with a confirmation message
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



Pairing-Based Onion Routing with Improved Forward Secrecy · 29: 29

Table I. Comparison of Costs of Setting Up a Circuit of Length �

Operation Time Tor PB-OR λ-Pass PB-OR
(ms) user OR user OR user efs-OR ifs-OR

Pairing 2.9 0 0 0 1 λ 1 1
RSA decryption 2.7 0 1 0 0 0 0 0
Exponentiation (Tor) 1.5 2� 2 0 0 0 0 0
Multiplication in G 1.0 0 0 � 0 � 0 1
Exponentiation in GT 0.2 0 0 � 0 � 0 1
RSA encryption 0.1 � 0 0 0 0 0 0

Total time (ms) 3.1� 5.7 1.2� 2.9 1.2� + 2.9λ 2.9 4.1
Total AES-encrypted messages �(� + 1) 2� 2λ�avg

The values in the Tor column are based on the Tor specification [Dingledine and Mathewson
2008]. PB-OR represents our pairing-based onion routing schemes. efs-OR indicates eventual
forward secret ORs, while ifs-OR indicates immediate forward secret ones. �avg represents the
average of the indices of the λ immediate forward secret nodes.

that travels back through the chain, producing � more messages, for a total
of 2�.

8.4 Cost of Building a λ-Pass Pairing-Based Onion Routing Circuit

Our λ-pass pairing-based onion routing circuit construction is similar to that of
our single-pass construction. Additional tasks that the immediate forward se-
cret nodes must do are generation of a random integer rUi , computation of the
pseudonym rUi Qv�i , and computation of γ

r�i
v�i

rUi . Uriel correspondingly has to
perform λ pairing computations to generate modified session keys using the
received pseudonyms rUi Qv�i from λ immediate forward secret nodes. The
number of messages and corresponding AES encryptions depends on the po-
sitions of the λ immediate forward secret nodes in the circuit. It is equal to
2

∑λ
i=1 �i = 2λ�avg, where �avg is the average of the indices of the immediate

forward secret nodes in the circuit.

8.5 Comparison and Discussion

We summarize the results of the previous three sections in Table I. We count
the number of “bignum” operations for each of the client and the servers, both
for Tor and for our pairing-based onion routing protocols. We ignore the com-
paratively negligible computational costs of AES operations and hashing. For
each bignum operation, we include a benchmark timing. These timings were
gathered on a 3.0 GHz Pentium D desktop using the PBC pairing-based cryp-
tography library (version 0.4.7) [Lynn 2008].

We can see that the total computation time to construct a circuit of length �
using our single-pass method is 61% less on the user side and 49% less on the
OR side as compared to using Tor. In addition, this circuit construction uses
only a linear number of AES-encrypted messages, while Tor uses a quadratic
number. As compared to single-pass circuit construction, our λ-pass circuit con-
struction requires an additional λ pairing computations by the user, requiring
a total of 1.2�+ 2.9λ ms, and on average 2.9 + 1.2λ/� ms for each of the ORs. For

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



29: 30 · A. Kate et al.

proposed values of λ = 3, 4, or 5, these are certainly reasonable times, consid-
ering the advantage of immediate forward secrecy, and having VPPK = VPMK.

9. CONCLUSION

We have presented new pairing-based approaches for circuit construction in
onion routing anonymity networks. We first extended the protocol of Sakai
et al. [2000] to allow for one-way or two-way anonymous or pseudonymous key
agreement. We then used this extension to produce new circuit construction
protocols.

Our single-pass circuit construction uses significantly less computation and
communication than the corresponding protocol in Tor, and reduces the load
on the network support infrastructure. To achieve immediate forward secrecy
instead of eventual forward secrecy, we have also defined λ-pass circuit con-
struction. These improvements can be used to improve the efficiency and to
enhance the scalability of low-latency anonymity networks.

ACKNOWLEDGMENTS

We thank the anonymous reviewers of PETS 2007 and TISSEC for their con-
structive feedback, which improved an earlier version of this article. Finally,
we would also like to thank Sk. Md. Mizanur Rahman for providing us with an
advance copy of the proceedings version of Rahman et al. [2006].

REFERENCES

BLAKE, I., SEROUSSI, G., AND SMART, N. P., Eds. 2005. Advances in Elliptic Curve Cryptogra-
phy. London Mathematical Society Lecture Note Series, No. 317, Cambridge University Press,
Cambridge, UK. 183–252.

BONEH, D. AND FRANKLIN, M. 2001. Identity-based encryption from the weil pairing. In Proceed-
ings of the International Cryptology Conference, Advances in Cryptology (CRYPTO’01). Lecture
Notes in Computer Science, vol. 2139, Springer, 213–229.

CAMENISCH, J. AND LYSYANSKAYA, A. 2005. A formal treatment of onion routing. In Proceedings
of the International Cryptology Conference, Advances in Cryptology (CRYPTO’05). Lecture Notes
in Computer Science, vol. 3621, Springer, 169–187.

CANETTI, R. 2001. Universally composable security: A new paradigm for cryptographic protocols.
In Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS’01).
IEEE Computer Society, 136–145.

CANETTI, R., HALEVI, S., AND KATZ, J. 2007. A forward-secure public-key encryption scheme.
J. Cryptol. 20, 3, 265–294.

CHAUM, D. 1981. Untraceable electronic mail, return addresses, and digital pseudonyms. Comm.
ACM 4, 2, 84–88.

CHIEN, H. AND LIN, R. 2006. Identity-based key agreement protocol for mobile ad-hoc networks
using bilinear pairing. In Proceedings of the IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing (SUTC’06). IEEE Computer Society, 520–529.

CORON, J.-S. 2000. On the exact security of full domain hash. In Proceedings of the Interna-
tional Cryptology Conference, Advances in Cryptology (CRYPTO’00). Lecture Notes in Computer
Science, vol. 1880, Springer, 229–235.

DAI, W. 1998. PipeNet 1.1. http://www.weidai.com/pipenet.txt.
DINGLEDINE, R. AND MATHEWSON, N. 2008. Tor protocol specification.

https://www.torproject.org/svn/trunk/doc/spec/tor-spec.txt.
DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. 2004. Tor: The second-generation onion

router. In Proceedings of the 13th USENIX Security Symposium. USENIX, 303–320.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



Pairing-Based Onion Routing with Improved Forward Secrecy · 29: 31

DUPONT, R. AND ENGE, A. 2006. Provably secure non-interactive key distribution based on pair-
ings. Discr. Appl. Math. 154, 2, 270–276.

FREEDMAN, M. J. AND MORRIS, R. 2002. Tarzan: A peer-to-peer anonymizing network layer. In
Proceedings of the 9th ACM Conference on Computer and Communications Security (CCS’02).
ACM, 193–206.

GOLDBERG, I. 2006. On the security of the tor authentication protocol. In Proceedings of the 6th
Workshop on Privacy Enhancing Technologies (PET’06). Lecture Notes in Computer Science, vol.
4258, Springer, 316–331.

GOLDSCHLAG, D., REED, M., AND SYVERSON, P. 1996. Hiding routing information. In Proceedings
of the 1st Internationa Workshop on Information Hiding. Lecture Notes in Computer Science, vol.
1174, Springer, 137–150.

HUANG, D. 2007. Pseudonym-based cryptography for anonymous communications in mobile ad hoc
networks. Int. J. Secur. Netw. 2, 3-4, 272–283.

KATE, A. AND GOLDBERG, I. 2007. A distributed private-key generator for identity-
based cryptography. Tech. rep. CACR 2007-33, Centre for Applied Cryptographic Research.
http://www.cacr.math.uwaterloo.ca/techreports/2007/cacr2007-33.pdf.

KATE, A., ZAVERUCHA, G. M., AND GOLDBERG, I. 2007a. Pairing-based onion routing. In Pro-
ceedings of the 7th Privacy Enhancing Technologies Symposium (PETS’07). Lecture Notes in
Computer Science, vol. 4776, Springer, 95–112.

KATE, A., ZAVERUCHA, G. M., AND HENGARTNER, U. 2007b. Anonymity and security in delay
tolerant networks. In Proceedings of the 3rd International Conference on Security and Privacy in
Communication Networks (SecureComm’07). IEEE Computer Society, 504–513.

KHALILI, A., KATZ, J., AND ARBAUGH, W. 2003. Toward secure key distribution in truly ad-hoc
networks. In Proceedings of the IEEE Workshop on Security and Assurance in Ad-Hoc Networks.
IEEE Computer Society, 342–346.

KOBLITZ, N. AND MENEZES, A. 2005. Pairing-based cryptography at high security levels. In Pro-
ceedings of the 10th IMA International Conference on Cryptography and Coding. Lecture Notes
in Computer Science, vol. 3796, Springer, 13–36.

LYNN, B. 2008. PBC library—The pairing-based cryptography library.
http://crypto.stanford.edu/pbc/.

MAUW, S., VERSCHUREN, J., AND DE VINK, E. 2004. A formalization of anonymity and onion
routing. In Proceedings of the 9th European Symposium on Research Computer Security
(ESORICS’04). Lecture Notes in Computer Science, vol. 3193, Springer, 109–124.

MENEZES, A., OKAMOTO, T., AND VANSTONE, S. 1991. Reducing elliptic curve logarithms
to logarithms in a finite field. In Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing (STOC’91). ACM, 80–89.

MENEZES, A., OORSCHOT, P. V., AND VANSTONE, S. 1997. Handbook of Applied Cryptography
1st Ed. CRC Press, Boca Raton, FL.

MÖLLER, B. 2003. Provably secure public-key encryption for length-preserving chaumian mixes.
In Proceedings of the Cryptographers Track at the RSA Conference (CT-RSA’03). Lecture Notes
in Computer Science, vol. 2612, Springer, 244–262.

OKAMOTO, E. AND OKAMOTO, T. 2005. Cryptosystems based on elliptic curve pairing. In Proceed-
ings of the Conference on Modeling Decisions for Artificial Intelligence (MDAI’05). Lecture Notes
in Computer Science, vol. 3558, Springer, 13–23.

ØVERLIER, L. AND SYVERSON, P. 2007. Improving efficiency and simplicity of tor circuit establish-
ment and hidden services. In Proceedings of the 7th Privacy Enhancing Technologies Symposium
(PETS’07). Lecture Notes in Computer Science, vol. 4776, Springer, 134–152.

RAHMAN, S., INOMATA, A., OKAMOTO, T., MAMBO, M., AND OKAMOTO, E. 2006. Anonymous
secure communication in wireless mobile ad-hoc networks. In Proceedings of the 1st Interna-
tional Conference on Ubiquitous Convergence Technology (ICUCT’06). Lecture Notes in Computer
Science, vol. 4412, Springer, 140–149.

REED, M., SYVERSON, P., AND GOLDSCHLAG, D. 1998. Anonymous connections and onion routing.
IEEE J. Select. Areas Comm. 16, 4, 482–494.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.



29: 32 · A. Kate et al.

RENNHARD, M. AND PLATTNER, B. 2002. Introducing MorphMix: Peer-to-peer based anonymous
internet usage with collusion detection. In Proceedings of the Workshop on Privacy in the Elec-
tronic Society (WPES’02). ACM, 91–102.

SAKAI, R., OHGISHI, K., AND KASAHARA, M. 2000. Cryptosystems based on pairing. In Proceed-
ings of the Symposium on Cryptography and Information Security (SCIS’00).

SETH, A. AND KESHAV, S. 2005. Practical security for disconnected nodes. In Proceedings of the
IEEE ICNP Workshop on Secure Network Protocols (NPSec’05). IEEE Computer Society, 31–36.

SHAMIR, A. 1979. How to share a secret. Comm. ACM 22, 11, 612–613.
SYVERSON, P., TSUDIK, G., REED, M., AND LANDWEHR, C. 2000. Towards an analysis of onion

routing security. In Proceedings of the Designing Privacy Enhancing Technologies: Workshop on
Design Issues in Anonymity and Unobservability. Lecture Notes in Computer Science, vol. 2009,
Springer, 96–114.

TOR PROJECT. 2008. Tor: Anonymity online. https://www.torproject.org/.
VERHEUL, E. 2001. Evidence that XTR is more secure than supersingular elliptic curve cryp-

tosystems. In Proceedings of the International Cryptology Conference, Advances in Cryptology
(Eurocrypt’01). Lecture Notes in Computer Science, vol. 2045, Springer, 195–210.

Received February 2008; revised February 2009; accepted February 2009

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 29, Pub. date: December 2010.


