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ABSTRACT
Interest in anonymous communication over distributed hash
tables (DHTs) has increased in recent years. However, al-
most all known solutions solely aim at achieving sender or
requestor anonymity in DHT queries. In many application
scenarios, it is crucial that the queried key remains secret
from intermediate peers that (help to) route the queries to-
wards their destinations. In this paper, we satisfy this re-
quirement by presenting an approach for providing privacy
for the keys in DHT queries.

We use the concept of oblivious transfer (OT) in communi-
cation over DHTs to preserve query privacy without compro-
mising spam resistance. Although our OT-based approach
can work over any DHT, we concentrate on communication
over robust DHTs that can tolerate Byzantine faults and
resist spam. We choose the best-known robust DHT con-
struction, and employ an efficient OT protocol well-suited
for achieving our goal of obtaining query privacy over robust
DHTs. Finally, we compare the performance of our privacy-
preserving protocols with their more privacy-invasive coun-
terparts. We observe that there is no increase in the message
complexity and only a small overhead in the computational
complexity.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General
—Security and protection; C.2.2 [Computer-Communica-
tion Networks]: Network Protocols—Routing protocols;
D.2.8 [Software]: Security and Protection—Cryptographic
controls

General Terms
Algorithms, Design, Reliability, Security

Keywords
Distributed hash tables, Query privacy, Spam resistance,
Oblivious transfer
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1. INTRODUCTION
In the digital society, our online activities are persistently

recorded, aggregated, and analyzed. Although worldwide
electronic data privacy laws and organizations such as EFF
[1] and EPIC [2] try to challenge this pervasive surveillance
through policies and protests, privacy enhancing technolo-
gies (PETs) are key components for establishing a suitable
privacy protection mechanism from the technology side. The
interest in developing novel PETs is increasing for a variety
of reasons, ranging from the desire to share and access copy-
righted information without revealing one’s network iden-
tity, to scalable anonymous web browsing [31, 29, 30, 35,
50]. In this paper, we study privacy in the peer-to-peer
(P2P) paradigm, a popular approach to providing large-scale
decentralized services.

In the P2P paradigm, distributed hash tables (DHTs) [38,
47, 41, 54] are the most common methodology for imple-
menting structured routing. Similar to hash tables, a DHT
is a data structure that efficiently maps keys onto values that
are stored over a distributed overlay network. However, un-
like hash tables, DHTs can scale to extremely large number
of key-value pairs as the mapping from keys to values is
distributed among all peers. In order to obtain a value as-
sociated with a key, a requester (a sender) in a DHT routes
the key through a small fraction of the network to reach the
receiver that has stored the value. DHTs can also handle
continual arrivals and departures of peers, and small-scale
modifications to the set of peers do not disturb the mapping
from keys to values significantly.

In a DHT, privacy may be expected for the sender, the re-
ceiver or the queried key. Ensuring the anonymity of senders
and requesters in DHTs has received considerable attention
in the privacy community [31, 29, 30, 35, 50]. Privacy of the
queries / keys, i.e., keeping the keys secret from intermedi-
ate peers that route the queries towards their destinations,
is also equally important: in many scenarios such as censor-
ship resistance, this query privacy constitutes a necessary
condition for sender and requestor anonymity. In this pa-
per, we present a practical approach to obtain privacy for
queries in robust and spam-resistant DHTs where a fraction
of peers may behave maliciously.

1.1 Contributions
Almost all anonymity solutions for DHTs try to provide

anonymity to a sender or a requester in a DHT lookup, up-
load or request. It may also be necessary that the queried
key remains secret from peers that route the corresponding
requests in some situations. We call this property query pri-



vacy. In this case, an intermediate routing peer should be
able to suggest a next peer or a set of next peers without de-
termining the key being searched for. Example application
scenarios for this property can be protection against mass
surveillance or censorship, preventing tracking and data-
mining activities on users requests, and providing opportuni-
ties to access material that is socially deplored, embarrassing
or problematic in society.

Recursive routing and iterative routing are the two ap-
proaches to route information in DHTs. In the recursive
routing approach, obtaining query privacy looks infeasible,
if not impossible. This results from the fact that the in-
termediate router itself decides to which peer to forward a
request. Assuming that every peer is under the control of
an individual, it is always possible for the controller to fig-
ure out the next peer for the request. On the other hand,
query privacy in iterative routing, which is also a commonly
used routing approach over robust DHTs, can be trivially
obtained if every peer sends its complete routing table to
the requesting peer. The requester can then determine the
next peer itself and send the request. However, this solution
may make it significantly easier to mount spamming attacks
in the systems: a malicious sending peer can easily gather
a significant amount of routing information, and use it to
determine and target peers that hold specific keys.

We instead use the oblivious transfer (OT) primitive [37,
17]. Given a peer holding a database, OT allows a re-
quester with a key to obtain a database entry associated
with the key, such that the requester does not get any in-
formation about other database entries and the database
owner does not learn the requester’s key. Therefore, OT
perfectly fits our requirements of obtaining query privacy
without divulging additional routing information. We use
the OT protocol by Naor and Pinkas [32] in the best-known
robust DHT constructions by Young et al. [52, 53] (their
RCP-I and RCP-II protocols) to obtain our goal of query
privacy in robust DHTs. Importantly, our query privacy
mechanism does not increase the message complexity of the
RCP-I and RCP-II protocols and an increase in the com-
putation cost is also not significant. We elaborate on our
exact choice of OT protocol in Section 4.3, and discuss ro-
bust DHT constructions in Section 2.

The employed OT protocol [32] is a simple indexed OT
protocol, where the database contains index-value pairs and
a requester inputs an index. However, a query for a rout-
ing table entry is an interval membership (or a range) query
and not an index query. Therefore, to prevent a requesting
peer from obtaining any additional information, we could
have employed the concept of conditional OT (COT) [15]
and used the interval-membership strong COT (I-SCOT)
protocol by Blake and Kolesnikov [8]. However, the I-SCOT
protocol is expensive in terms of both computation and com-
munication. We observe that by releasing the upper and
lower bounds of a routing table entirely to the requester,
large improvements can be made. There is no information
in these range boundary values for a malicious requesters in
terms of spamming as they do not convey any information
regarding the identities of the key owners. However, given
this information, the requester will know the desired entry
(index), allowing the use of OT instead of the more complex
COT.

Private information retrieval (PIR) [13] is a weaker form
of OT, where more information may be revealed than asked

for; e.g., sending the complete routing table is a trivial PIR
protocol. PIR protocols can be less costly than OT in terms
of computation, but the risk of spamming persists with all
non-OT PIR protocols, and hence we avoid them.

Outline.
The rest of the paper is organized as follows. In Sec-

tion 2, we survey the literature on robust DHTs. Section 3
describes our system model, while Section 4 overviews the
cryptographic tools used in our constructions. In Section 5,
we present the robust communication protocols that pre-
serve query privacy. In Section 6, we analyze and discuss
performance and systems issues. Finally, we conclude in
Section 7. We include a detailed description of the employed
OT protocol in Appendix A.

2. BACKGROUND AND RELATED WORK
Malicious behaviour is now common over the Internet.

Lack of admission control mechanisms in DHT systems make
them particularly vulnerable to these malicious (or Byzan-
tine) attacks [45, 49]. Such attacks can not only pollute
the data that is available over DHTs [25], but also poison
the indices by creating fake data identifiers [26]. They may
further create Sybil identities and disrupt communication
between well-behaving peers by spamming. The concern is
quite serious, since large-scale P2P systems in existence to-
day (e.g., Azureus or Vuze DHT [18] or KAD DHT [46]) see
millions of users every day. Along with the basic file sharing
application, there are proposals for using P2P systems to
re-implement the Domain Name System [48], mitigate the
impact of computer worms [3] and protect archived data [20,
51]. These applications would benefit from tolerance against
Byzantine behaviors. As a result, a number of solutions have
been defined that can provably tolerate Byzantine faults over
P2P systems (e.g., [6, 7, 5, 42, 19, 33, 22, 23, 52]). Due to
the popularity of DHTs, the majority of these solutions are
built to work over DHTs and the resulting constructions are
called robust DHTs.

In robust DHTs, malicious attacks are generally dealt with
using the concept of quorums [22, 33, 42, 4, 19, 6, 7, 5]. A
quorum is a set of peers such that a minority of the members
suffer adversarial faults. Typically, it consists of Θ(logn)
nodes where n is the total number of nodes in the underly-
ing DHT. A DHT quorum replaces an individual DHT peer
as the atomic unit and malicious behaviour by an adversary
is overcome by majority action; e.g., the content may be
stored in a distributed and redundant fashion across mem-
bers of a quorum such that it cannot be polluted by a small
fraction of host peers. Poisoning attacks can be mitigated by
having peers belonging to the same quorum validate routing
information before it is advertised. If a peer violates the
protocol, then it is possible to remove it from the quorum,
which effectively removes them from the system.

Protocols using quorums are split between those that use
iterative and those that use recursive approaches. When
sending a request using the recursive approach, a sending
peer contributes one message (its request), while its DHT
has to generateO(logn) messages. In the iterative approach,
a sending peer has to contribute an equal number of mes-
sage as its DHT. Consequently, while dealing with Byzantine
faults, the iterative approach is more common than the re-
cursive approach as the former provides better protection
against the spamming attack than the latter.



Peers u, v, and w are in the routing table (RT ) of peer p on a DHT. Correspondingly, in an quorum topology with p ∈ Q1,
u ∈ Q2, v ∈ Q3 and w ∈ Q`, quorums Q2, Q3, and Q` are linked to quorum Q1 in its RT . Thick lines signify inter-quorum
links. Each quorum has size η = Ω(logn) and must have strictly fewer than 1/3 faulty peers.

Figure 1: Quorum Topology over DHTs

The common way such quorums are utilized is as follows:
a request m originating from a peer p traverses a sequence of
quorums Q1, Q2, . . . , Q` until a destination peer is reached.
A typical example is a query for content where the desti-
nation is a peer q holding a data item. Initially p notifies
its own quorum Q1 that it wishes to transmit m. Each
peer in Q1 forwards m to all peers in Q2. Every peer in Q2

determines the correct message by majority filtering on all
incoming messages and, in turn, forwards it to all peers in
the next quorum. This forwarding process continues until
the quorum Q` holding q is reached. Assuming a major-
ity of correct peers in each quorum, transmission of m is
guaranteed.

Unfortunately, this simple protocol is costly. If all quo-
rums have size η and the path length is `, then the mes-
sage complexity is `η2. Typically, for a DHT of n nodes,
η = Θ(logn) and, as in Chord [47], ` = O(logn), which
gives O(log3 n) messages; this is likely too costly for prac-
tical values of n. Saia and Young [42] mitigate this prob-
lem using a randomized protocol which provably achieves
O(log2 n) messages in expectation; however, the constants
in their protocols are prohibitively large.

Recently, Young et al. [52] demonstrated that the prob-
lem can be solved using threshold cryptography [14]. Using
a distributed key generation (DKG) protocol over the Inter-
net [24] and a threshold digital signature scheme [9], they de-
sign two robust communication protocols, RCP-I and RCP-
II, that respectively require O(log2 n) messages and O(logn)
messages in expectation. Importantly, these protocols can
tolerate adversarial peers up to any number less than 1/3 of
a quorum in the asynchronous communication setting and
less than 1/2 of a quorum in the synchronous communication
setting. They also do not require any trusted party or costly
global updating of public/private keys outside of each quo-
rum. The protocols work in the elliptic curve cryptography
(ECC) based discrete logarithm setting, and its security is
based the gap Diffie–Hellman (GDH) assumption [11]. The
paper also includes results from microbenchmarks conducted

over PlanetLab showing that these protocols are practical for
deployment under significant levels of churn and adversarial
behaviour. We find this work to be the most up-to-date so-
lution for robust and spamming-resistant communication in
DHTs and use it as a starting point towards query privacy.

Privacy in communication over DHTs has also been under
consideration over the last few years [31, 29, 30, 35, 34, 50].
However, most of these PETs concentrate on sender (or re-
quester) privacy, and generally aim at a scalable anonymous
web browsing system: a future replacement for Tor [16].
Our aim in this paper is different; we want to achieve pri-
vacy for keys in DHT queries (or query privacy). Never-
theless, we observe that our query privacy mechanism can
further enhance anonymity in almost all of the above PETs.
Our approach is also significantly better in terms of message
complexity than redundant routing [34], where a requester
makes multiple queries to confuse an observer.

3. SYSTEM MODEL AND ASSUMPTIONS
In this section, we discuss the quorum-based DHT system

model, and the adversary and communication assumptions
that we make in our protocols. As we develop our anonymity
solution on top of robust communication protocols by Young
et al. [52], our model is nearly the same as their model.

For ease of exposition, we do not consider the link failures
and crash-recovery mechanism in that work, which in turn
follows from the underlying DKG architecture [24]. How-
ever, our protocols indeed work even under these assump-
tions without any modification.

3.1 Adversary and Communication Assump-
tions

We work in the asynchronous communication model (un-
bounded message delays) with Byzantine faults. However,
to ensure the liveness of the protocols, we need the weak syn-
chrony communication assumption by Castro and Liskov [12],
which states that the message delay does not grow longer
indefinitely. Note that this assumption arrives from the un-



derlying robust communication protocols and is unrelated
to our privacy preserving mechanism.

In a P2P system, each peer is assumed to have a unique
name or identifier p and an IP address paddr. Peers p and q
can communicate directly if each has the other in its routing
table (RT ).

Similar to the majority of anonymous communication net-
works [16, 29, 30, 35], we do not assume a global adversary
that can control the whole network and break anonymity
by observing all communication by every peer. Such an ad-
versary seems impractical in large-scale geographically dis-
tributed DHT deployments. However, we assume that our
partial adversary knows the network topology and controls a
small fraction of the DHT peers. Following prior works [39,
40, 43, 52, 53], we consider around 10% of all peers to be
under adversarial control. The adversary cannot observe
communication at the majority of nodes; however, it may
try to break query privacy, spam honest nodes, or disrupt
the communication by actively attacking traffic that reaches
peers under its control.

We assume that the 10% adversarially controlled nodes
are spread out evenly over the DHT, and strictly less than
1/3 of the peers in any quorum are faulty which is the
best possible resiliency in the asynchronous setting. This
bound on the adversary is possible using mechanisms like
the cuckoo-rule developed by Awerbuch and Scheideler [6],
which restricts the adversary from acquiring many peers in
the same quorum. Further, all faulty peers in a quorum may
be under the control of a single adversary, and collude and
coordinate their attacks on privacy, safety and liveness.

Finally, our adversary is computationally bounded with
security parameter κ. We assume that it is infeasible for the
adversary to solve the GDH problem [11] in an appropri-
ate setting for signatures and the decisional Diffie–Hellman
(DDH) problem [10] in another setting for OT.

3.2 Quorums
In a variety of approaches used to maintain quorums, one

may view the setup of quorums as a graph where peers corre-
spond to quorums and edges correspond to communication
capability between quorums. This is referred to as the quo-
rum topology in the literature. Figure 1 shows how quorums
can be linked in a DHT such as Chord [47].

We assume the following four standard invariants [52] are
true for the quorum topology under consideration:

Goodness. Each quorum has size η = Ω(logn) and must
have strictly fewer than 1/3 faulty peers.

Membership. Every peer belongs to at least one quorum.

Intra-Quorum Communication. Every peer can commu-
nicate directly to all other members of its quorums.

Inter-Quorum Communication. if Qi and Qj share an
edge in the quorum topology, then p ∈ Qi may commu-
nicate directly with any member of Qj and vice versa.

To the best of our knowledge, no practical implementation
of a quorum topology yet exists. However, as indicated in
the literature [5, 6, 7, 19, 33], maintaining the above four
invariants looks plausible in real-world DHTs.

In a DHT where the above four invariants are maintained,
the general communication mechanism in Young et al. [52]
works as shown in Figure 2. Assume that a peer p wants

A peer p sequentially communicates with Q1, Q2, and so on,
until it reaches Q` who owns the searched-for key.

Figure 2: Iterative Communication in Robust DHTs
using Quorums

to send a query m associated with a key that belongs to
quorum Q`, which it does not know. The recipients of the
request are generally a set of peers D ⊆ Q`. Peer p requests
authorization from peers in its quorum Q1. These autho-
rizations are based on a rule set [19] that defines acceptable
behavior in a quorum (e.g., the number of data lookup oper-
ations a peer may execute during a predefined time period).
This rule set is known to every peer within a quorum and
is possibly the same across all quorums; it reduces the im-
pact of spamming attacks. Peer p receives Proof(Q1) in
the form of a signature if authorized. It then sends this to
quorum Q2 from its routing table, which is responsible for
the key being searched for. One or more members of Q2 ver-
ify the signature and provides p routing information and a
Proof(Q2) for Q3, which will convince Q3 that p’s actions
are legitimate (i.e., approved by its quorum). The protocol
continues until p reach Q`.

As mentioned in Section 2, it possible to achieve robust
communication without using any of the above cryptogra-
phy. However, use of cryptography provides efficiency and
reduce the message complexity by at least a linear factor.
Note that we do not discuss membership update operations
for quorums in this paper as they remain exactly the same
as those in previous work [52, 53].



4. CRYPTOGRAPHIC TOOLS
Here, we describe the cryptographic tools that we use in

our solution. In particular, we review distributed key gener-
ation, threshold signature and oblivious transfer protocols.

4.1 Threshold Signatures
The use of distributed key generation (DKG) and thresh-

old signatures in our privacy preserving schemes comes from
the underlying robust DHT architecture. In this architec-
ture, threshold signatures are used to authenticate the com-
munication between quorums. In an (η, t)-threshold signa-
ture scheme, a signing (private) key sk is distributed among
η peers either by a trusted dealer (using verifiable secret
sharing) or in a dealerless fashion (using DKG). Along with
private key shares ski for each party, the distribution algo-
rithm also generates a verification (public) key PK and the

associated public key shares P̂K. To sign a message m, any
subset of t+1 or more peers use their shares to generate the
signature shares σi. Any party can combine these signature
shares to form a message-signature pair S = (m,σ) = [m]sk
that can be verified using the public key PK.

In this work, we refer to a message-signature pair S as
a signature. Further, it is possible to verify the individual

signature shares σi using the public key shares P̂K. We as-
sume that no computationally bounded adversary that cor-
rupts up to t peers can forge a signature S ′ = (m′, σ′) for
a message m′. Malicious behaviour by up to t peers cannot
prevent generation of a signature.

Among three known practical threshold signature schemes
[21, 44, 9], Young et al. employed the threshold version [9] of
the Boneh-Lynn-Shacham (BLS) signature scheme [11] for
their robust DHT design. They reason that, unlike Shoup’s
construction [44], the key generation in threshold BLS signa-
ture scheme does not mandate a trusted dealer, and unlike
Gennaro et al.’s construction [21], the signing protocol in
threshold BLS signature scheme does not require any in-
teraction among peers or any zero-knowledge proofs. They
also mention efficiency of the BLS signature scheme in terms
of size and generation algorithm as compared to the other
options and employ it to authenticate the communication
between the quorums.

4.2 Distributed Key Generation—DKG
As a trusted party is not feasible in the P2P paradigm, the

underlying robust DHT architecture also needs a complete
distributed setup in the form of DKG to generate distributed
signing keys. An (η, t)-DKG protocol allows a set of η nodes
to construct a shared secret key sk such that its shares ski
are distributed across the nodes and no coalition of fewer
than t nodes may reconstruct the secret. In the discrete
logarithm setting, there is also an associated public key PK

and a set of public key shares P̂K in DKG for verification
as required for threshold signatures.

For the robust DHT architecture, Young et al. use a DKG
protocol [24] defined for use over the Internet. We continue
to use threshold BLS signatures over this DKG setup in our
privacy preserving enhancement.

4.3 Oblivious Transfer—OT
The first notion of oblivious transfers was introduced in

1981 by Rabin [37]. A 1-out-of-2 oblivious transfer (OT) [17]

allows a chooser1 p to decide between two messages held by
a server2 q. Moreover, OT protocols also guarantee that the
server learns nothing, while the chooser obtains at most one
of the messages. The concept may be generalized to 1-out-
of-ν OT, where q holds ν messages from which p may pick
only one. In this work we will use this to obtain the relevant
entry of the routing table from a quorum; the use of oblivious
transfers ensures that the query remains secret, while at the
same time spamming is prevented, since a malicious p is
guaranteed to receive only a single entry.

We utilize an OT protocol by Naor and Pinkas [32, Pro-
tocol 3.1] as it fulfills all our needs; see Appendix A for an
overview. The protocol provides 1-out-of-ν string OT, as we
require. It is round optimal and requires only one message
per party (OT-request from p and OT-response from q), ex-
cept an OT-setup message that we may piggyback in the sur-
rounding protocol. Moreover, it requires no zero-knowledge
proofs, and also works in the elliptic curve cryptography
(ECC) setting. The computation complexity of the proto-
col is dominated by the number of exponentiations; both
server and chooser must on average perform two of these.
In addition to the low computational costs, the overall com-
munication amounts to roughly 3ν group elements.

The construction of Naor and Pinkas allows transfer of
group elements; i.e., strings of approximately 256 bits in the
ECC setting. This is not sufficient for an entire entry of
a routing table. Rather than increasing the group size or
performing multiple OTs, we simply let a peer q symmetri-
cally (AES) encrypt each entry of the routing table using a
random key. The encrypted table is then sent to peer p who
uses an OT execution to obtain the AES key for the relevant
entry from peer q.

For protocol RCPqp-I in Section 5.2, we will require a
chooser p to run an OT with multiple members of the same
quorum. We could reduce p’s computation by ensuring that
all parallel OT instances are verbatim copies here. This
would naturally require that the all servers use the same
source of randomness for OT-setup and for AES keys. This
can be achieved easily using a parameterized pseudorandom
function (PRF): φ(r, ·). The private key r required for φ
can easily agreed upon as part of a DKG execution, as it
should be known to all quorum members. When the quo-
rum executes an OT instance with chooser p, it may use p’s
message itself as an input to PRF φ. This PRF-based mod-
ification does not have any effect on the OT security proof
as all parallel OT instances are verbatim copies.

Other Possibilities.
A natural question to ask is whether OT is really required,

or whether another protocol could achieve the desired goal
more efficiently. Although PIR protocols appear to be an
alternative, they are not an acceptable alternative because
they leak routing information. Further, computational PIR
protocols have similar cost as the selected OT protocol [32].
For that matter, most non-trivial PIR is essentially OT as
well.

Theoretically better OT protocols also exist, e.g. Lip-

1This is sometimes denoted “receiver” in the OT literature;
we use the term“chooser” to avoid confusion with the overall
receiver of message m in the surrounding DHT protocol.
2This is typically denoted “sender” in the OT literature; we
use the term “server” to avoid confusion with the overall
sender of message m in the surrounding DHT protocol.



maa’s OT protocol[27], which provides 1-out-of-ν OT with
O(log2 ν) multiplicative overhead on communication (of a
single entry). For the proposed protocol by Naor and Pinkas,
the overhead is linear which, in theory, is clearly worse.
However, our approach is better in the present setting when
we consider numbers from real-world DHTs. With more
than million peers in a practical DHT, we will have ν ≈ 20.
For ν ≈ 20, log2 ν ≈ 20 and linear communication without
any hidden constant is quite acceptable. A generic 1-out-of-2
OT protocol of Peikert et al. [36] requires only two messages,
and roughly five exponentiations per party. However, this
is still more than the amortized cost of the 1-out-of-ν OT
of Naor and Pinkas and we do not use it. While we cannot
rule out the possibility of a more efficient protocol, it seems
highly unlikely.

Finally, hiding the range values in routing table entries
seems possible, but it is most likely infeasible in practice.
Blake and Kolesnikov [8] provides a 1-out-of-2 conditional
OT (COT) based on the greater-than relation. Their pro-
tocol has a blowup of a factor linear in the bitlength of
the key. This blowup is needed in order to compute the
greater-than relation. In addition to this, there are two crit-
ical issues that must be solved before COT can be used for
hiding the range values: 1) the present work [8] requires a
1-out-of-ν conditional oblivious transfer 2) the protocols of
[8] are only secure against semi-honest adversaries. Neither
seems impossible to solve, but both appear to incur a sig-
nificant blowup. Nevertheless, as no routing information is
lost through range boundaries, we need not consider these.

5. ADDING QUERY PRIVACY
Young et al. [52] present two robust communication proto-

cols using quorums and threshold cryptography: RCP-I and
RCP-II. As described in Section 3.2, both these protocols
work in the general communication architecture shown in
Figure 2. They use threshold BLS signatures over the DKG
architecture explained in sections 4.1 and 4.2. In this sec-
tion, we provide query privacy to the above protocols using
the OT primitive explained in Section 4.3 to define protocols
RCPqp-I and RCPqp-II.

5.1 System Setup
We start our discussion by describing the setup required

for our protocols. For clarity of description, we also briefly
review routing tables (RT ) in quorum-based DHTs.

Initiation. Before the system becomes functional, the ini-
tiator has to choose appropriate groups and other setup
parameters for the BLS signature and OT protocols.
Note that there are no trust assumptions required dur-
ing this step, as these parameters can be selected from
the well-known standards.

Distributed Key Generation. A DKG instance is exe-
cuted, when a quorum gets formed in DHTs. At the
end of an execution, each quorum Qi is associated with
a (distributed) public/private key pair (PKQi , skQi).
Note that only those quorums linked to Qi, and not
everyone in the network, need to know PKQi . Fur-
ther, every peer p ∈ Qi possesses a private key share
(skQi)p of skQi . Unlike the quorum public/private key
pair of Qi which must be known to all quorums to
which Qi is linked in the quorum topology, only the

members of Qi need to know the corresponding public

key shares P̂KQi . The private key r of PRF φ(r, ·) re-
quired in RCPqp-I can easily be generated during this
DKG execution.

Routing Table Setup. Without loss of generality, we as-
sume a Chord-like DHT [47]. When a quorum gets
formed in DHTs, it determines its neighbors and forms
its routing table RT . For a quorum Qi, each entry of
its routing table has the formRT Qj = [Qj , p, p

′, PKQj ,
ts]. In this entry, peer p ∈ Qj and peer p′ ∈ Qj−1

where quorum Qi links to quorum Qj and Qj−1 in the
quorum topology and p and p′ are respectively located
clockwise of all other peers in Qj and Qj−1. PKQj

is the quorum public key of Qj generated using DKG,
and ts is a time stamp for when this entry was created.
Quorum Qj is responsible for the identifier space be-
tween identities p and p′. RT entries of Qi are set such
that the complete identifier space is covered by them.

5.2 Adding Query Privacy to RCP-I: RCPqp-I

Protocol RCP-I works deterministically. Here, we include
a privacy preserving mechanism for queries in RCP-I using
the OT protocol described in Section 4.3. The enhanced
protocol (RCPqp-I) appears in Figure 3, which we outline as
follows.

Assume that p ∈ Q1 is searching for a key and the target
is a set of peers D ⊆ Q`. Let the search path go through
quorums Q1, . . . ,Q`. Peer p begins by sending a request
[p, paddr, ts1] to all peers in its quorum Q1., where ts1 is a
time stamp. Unlike the original RCP-I, the key correspond-
ing to the intended destination of the message is not included
here. Each honest peer q ∈ Q1 checks if p’s request follows
the rule-set as described in Section 3.2. If there is no vi-
olation, q sends its signature share to p, who interpolates
those shares to generate a signature S1 = [p|paddr|ts1]skQ1

.

In each intermediate step (i = 2 to ` − 1), p sends its most
recent signature Si−1 and a new time stamp tsi to each peer
q ∈ Qi. Since Qi is linked to Qi−1 in the quorum topology,
each peer q knows public key PKQi−1 to verify Si−1. If Si−1

is verified and tsi is valid, peer q sends back its signature
share on [p|paddr|tsi]. Peer p collects the shares to form Si
and majority filters on the routing information for Qi+1. If
verification of Si fails, peer p sends all shares back to every
party in Qi, who help p by filtering the invalid shares out.
Finally, for Q`, p sends m along with S`−1 to peers in the
target set D in Q`.

It still remains to see how Qi tells p the correct Qi+1 as
the next quorum without knowing the key being searched for.
We accomplish this using the OT protocol. Along with Si−1

and tsi, p also sends an OT-initiation request to every peer
in q ∈ Qi. Peer q responds back with the entry-wise sym-
metrically encrypted (AES) routing table RT Qi , the OT-
setup message, and the upper and lower bounds of ranges in
RT Qi . Note that since all quorum members use the same
randomness (due to the use of a PRF where everyone holds
the private key), the messages from all honest parties will
be the same. Peer p determines an index in RT Qi for the
next quorum by searching for key in the received ranges and
sends an OT-request for that index. Peer q then computes
and sends the OT-response. Using this response, peer p ob-
tains the symmetric key corresponding to the queried index
and decrypts the appropriate entry in RT Qi to determine



Initial Step: p ∈ Q1 with Quorum Q1

peer p every peer q ∈ Q1

sends a request [p|paddr|ts1] =⇒

⇐=
if the request is legitimate, reply with a signature
share

Intermediate Steps: p ∈ Q1 with Quorum Qi for i = 2 to `− 1
peer p every peer q ∈ Qi

interpolate Si−1 = [p|paddr|tsi−1]skQi−1
using the

received shares and send Si−1 and a new tsi. Re-
quest an OT initiation

=⇒

⇐=

verify Si−1 using PKQi−1 and validates tsi. If
successful, send a signature share, an OT-setup
message, the ranges in RT of Qi and the entry-
wise encrypted RT of Qi

interpolate Si = [p|paddr|tsi]skQi
using the re-

ceived shares and verify it using PKQi . If in-
valid, sends all signature shares back. Send an
OT-request for the index corresponding to the
searched key

=⇒

⇐= verify all shares using P̂KQi and inform p of valid
shares. Send an OT-response

Use the received OT-responses, if any, to deter-
mine the next quorum Qi+1

Final Step: p ∈ Q1 with Quorum Q`
peer p D ⊆ Q`

send S`−1 along with its request m =⇒

Figure 3: RCPqp-I: RCP-I with Query Privacy

the next quorum Qi+1. Any wrongdoing by Byzantine peers
in RT Qi range tables, encrypted RT Qi blocks and OT exe-
cutions are taken care of by the majority action. As p knows
Q2 using its own routing table, there is no OT involved in
the initial step.

Notice that it is also possible for peer p to use OT in
the final step while communicating with the target set D in
Q`, if the privacy application demands it. In that case, the
target set D only knows that the queried key is one of its
keys, but cannot determine the exact key.

The correctness of protocol RCPqp-I follows directly from
that of protocol RCP-I and we refer the readers to [53] for
a detailed proof. Although the encrypted routing tables (a
few kilobytes in size) are sent in our privacy-preserving ap-
proach as compared to the individual routing table entires
in RCPqp-I, it does not affect the message complexity of the
protocol. The message complexity of protocol RCPqp-I re-
mains exactly the same as protocol RCP-I, which is equal
to O(log2 n). We discuss the increase in computational cost
and other systems matters in Section 6.

5.3 Adding Query Privacy to RCP-II: RCPqp-II

Protocol RCP-II utilizes signed routing table (RT ) in-
formation and reduces the message complexity in protocol
RCP-I by a linear factor (in expectation) using a uniformly
random selection of peers in the quorums. Here, all RT
entries are signed separately by the quorum whenever RT s
are modified. In particular, every peer in the quorum, using
their DKG private key shares, generates and sends signature
shares, which are then interpolated to obtain signed RT en-

tries. The OT setup and the OT protocol remain exactly
the same as in RCPqp-I. The enhanced protocol (RCPqp-II)
appears in Figure 4, which we outline as follows.

Initially, for simplicity, assume that peers act correctly.
The initial step, where p communicates within its quorum,
Q1, remains exactly the same. Each peer in Q1 receives
[p|paddr|ts] from p. If the request does not violate the rule set,
then peer p receives signature shares and computes M1 =
[p, paddr, ts]skQ1

. Next, p knows the membership of Q2 which
belongs to its RT , and selects a peer q2 ∈ Q2 uniformly
at random without replacement. Peer p sends M1 to q2.
The correct q2 verifies M1 using PKQ1, and replies with
[PKQ1]skQ2

and [RT Q3 ]skQ2
. Here, [PKQj ]skQi

denotes the
quorum public key of Qj signed by quorum Qi as neighbor-
ing quorums know each others’ public keys, and [RT Qj ]skQi

denotes the routing entry for Qj signed by Qi. Peer p verifies
[PKQ1]skQ2

and [RT Q3 ]skQ2
, and checks if the time stamp

is valid. If so, p constructs M2 = [M1|[PKQ1]skQ2
]. The

idea is to allow some peer in Q3 to verify PKQ1 and M1

using a signature chain. Further, p can check the response
from some peer in Q3 in the next step using PKQ3 included
in RT Q3 . This process repeats with minor changes for the
remaining steps until p reaches the destination quorum Q`.
If any peer does not respond in the amount of time prede-
fined by the weak synchrony assumption [12] (as described
in Section 3.1) or responds incorrectly, the protocol proceeds
by choosing uniformly at random another peer in the quo-
rum. Note that any attempt by a malicious peer to return
incorrect information is detectable.

It still remains to see how the OT executions for key are



Initial Step: p ∈ Q1 with Quorum Q1

peer p every peer q ∈ Q1

sends a request [p|paddr|ts] =⇒

⇐=
if the request is legitimate, reply with a signature
share

verify and interpolate received shares to form
M1 = [p|paddr|ts1]skQ1

Intermediate Steps: p ∈ Q1 with Quorum Qi for i = 2 to `− 1
peer p selected peer qi ∈ Qi

select peer q ∈ Qi uniformly at random without
replacement. Send Mi−1 and request an OT ini-
tiation

=⇒

⇐=

For j = i − 1 downto 2, verify PKQj−1 using
PKQj and verify M1 using PKQ1. If successful,
send [PKQi−1 ]skQi

, the ranges in RT of Qi and
the entry-wise encrypted (signed) RT of Qi

sends an OT-request for the index corresponding
to the searched key

=⇒

⇐= send an OT-response back
If PKQi+1, RT Qi+1 (computed from the OT-
response) and PKQi−1 verifies, compute Mi =
[Mi−1|[PKQi−1 ]skQi

] and determine the next
quorum Qi+1 fromRT Qi+1 . Otherwise or if there
is a timeout, choose q′i ∈R Qi and repeat

Final Step: p ∈ Q1 with Quorum Q`
peer p D ⊆ Q`

send M`−1 along with its request m =⇒

Figure 4: RCPqp-II: RCP-II with Query Privacy

performed such that a correct peer qi in Qi can give rout-
ing information for Qi+1 to peer p. For this, peer p sends
an OT initiation to peer qi along with Mi−1. Upon verifi-
cation of the signature chain, qi replies with [PKQi−1 ]skQi

,
ranges in RT of Qi, entry-wise encrypted (signed) RT of
Qi, and the OT-setup message. Note that these encryp-
tions are done locally at peers, and applied on both the
RT entires and signatures. Peer p then determines an in-
dex corresponding to the key it is searching for and sends
an OT-request for that index. Peer qi then computes and
sends an OT-response. Using this response, peer p obtains
the symmetric key corresponding to the queried index and
decrypts the appropriate entry in RT Qi , checks the signa-
ture on the resulting plaintext, and thus determines the next
quorum Qi+1.

Similar to RCPqp-I, if required, it is possible for peer p
to use OT in the final step while communicating with the
target set D in Q`. The correctness of the protocol follows
directly from that of the original RCP-II protocol, and we
refer the readers to [53] for a detailed proof. The message
complexity of the enhanced protocol remains exactly the
same as the original protocol, which is equal to O(logn) in
expectation. We discuss the increase in computational cost
and other systems matters in Section 6.

6. ANALYSIS AND DISCUSSION
As discussed in Section 5, our protocols do not increase

the message complexity of their original counterparts RCP-
I and RCP-II. In this section, we consider the increase in

computation due to the query-privacy mechanism and find it
to be nominal. We also analyze possible system-level attacks
on our protocols.

6.1 Additions to Computational Costs
Query privacy does not come without some additional

computation. However, for our choice of OT, this increase is
insignificant as compared to the computations already done
in the original RCP-I and RCP-II protocols.

In both the RCPqp-I and RCPqp-II protocols, a request-
ing peer p has to perform only two additional exponentia-
tions at each privacy-preserving RT entry retrieval, while
a responding peer qi in quorum Qi must perform one ad-
ditional exponentiation. Peers in Qi also have to perform
ν exponentiations for an OT setup, where ν is the size of
RT . However, they can be batch-computed and may also be
reused in ν requests. In terms of computation, our privacy-
preserving mechanism remains exactly the same in both pro-
tocols, RCPqp-I and RCPqp-II. This results from a peer p
running the same instance of OT with all peers in the quo-
rum in RCPqp-I with the help of the PRF-based technique
discussed in Section 4.3.

Timing values computed using the pairing-based cryptog-
raphy (PBC) library [28] indicate that one exponentiation
takes around 1 ms on a desktop machine. Given that the
communication time for the original RCP-I and RCP-II pro-
tocols is greater than 3 seconds (refer to Young et al. [52]
for a detailed discussion), the cost of these exponentiations
is insignificant. In terms of system load, a DKG execution



in RCP-I and RCP-II on average requires 2 CPU seconds,
and a threshold signature generation and verification takes
about 6 CPU ms. Therefore, our OT executions do not
increase the system load by any significant fraction. Note
that the OT protocol also involves a few group multiplica-
tions, PRF executions, symmetric encryptions and hashes.
Their computations take only a few µs, so we ignore these
computational costs in our discussion.

6.2 System-level Attacks on Query Privacy
Although OT hides the queried key completely in the cryp-

tographic sense, there can be system-level attacks that leak
some information about the key.

A range estimation attack defined by Wang, Mittal and
Borisov [50] that reduces privacy provided in NISAN [35]
could be applied to our RCPqp-I protocol. This attack is
based on the fact that the Chord-like DHT ring is directed
and the requesting peer p will not query a quorum succeed-
ing the queried key except in the first iteration. Therefore,
an adversary that can observe the peer p contacting a se-
quence of quorums can put them together into a sequence
to narrow down on the target range that peer p may reach.
In this attack, the range only extends from the last contacted
quorum having an adversarial peer to the largest jump pos-
sible at the end of first iteration. For NISAN, Wang et al.
show that if at least 20% of nodes are under the adversary’s
control, the adversary may obtain a significant amount of in-
formation about the queried key. As indicated in Section 3.1,
we consider the percentage of peers under the control of a
single adversary to be around 10%. Therefore, although
this range estimation attack is possible, it is not particu-
larly effective in our DHT setting. On the other hand, the
curious peers in the intermediate quorums only see requests
approved by one of their neighbors. This, along with the
security provided by the OT protocol, ensures that nothing
is revealed about the queried key to the curious intermediate
quorums.

As only an expected constant number of peers are con-
tacted per intermediate quorum in our RCPqp-II protocol,
the range estimation attack by Wang et al. [50] is far less
effective. However, query privacy for our RCPqp-II protocol
is slightly weaker in terms of the above mentioned curious
observer attack. This is a direct consequence of the use of
a signature chain to authorize a request from a peer p: as-
sume a peer qi from an intermediate quorum Qi. Although
qi may not be able to determine quorums from the public
keys in a chain, the length of the chain itself might give peer
qi some information about possible key values. This results
from a property of Chord-like DHTs: generally each step
brings a requester exponentially closer to its destination. As
an example, a shorter signature chain indicates that a des-
tination quorum is probably situated away from Qi in the
key (or identifier) space, while a length nearly equal to logn
indicates that the destination quorum is probably nearby.
This is, however, a weak heuristic attack as path lengths of
DHT requests may vary significantly. Further, it is possible
to mislead such a curious adversary by adding a few fake
signatures at the end of the chain. The requesting peer p
has to have this done by its quorum Q1.

6.3 Crawling Attacks towards Spam Preven-
tion

As discussed in Section 2, usage of the iterative routing ap-

proach significantly improves robustness against spamming
attacks, since a spamming peer has to perform an equal
amount of work as the rest of the system. Young et al.
[52] add further protections against spamming in RCP-I and
RCP-II by not allowing the adversarial peer to gather a large
amount of routing information. They add the queried keys
to requests. As a result, an execution of RCP-I or RCP-II
leads to the requester p gaining information only about the
` quorums in its path. We concentrate on query privacy in
this work and enforce that the queried key should remain
completely oblivious to every intermediate quorum Qi for
i ∈ [1, ` − 1]. This may lead to attacks, where the adver-
sary peer p obtains more routing information; we call these
attacks crawling attacks.

In our RCPqp-I protocol, a malicious peer p may try to
obtain the entire RT of Qi by querying for different keys
(or RT indices) to different peers in Qi. As a result, the
adversary peer p can acquire more information than allowed
by the rule set. It is possible to thwart this supposed attack
completely by adding one communication round: here, p
also has to get its OT-request message (which is the same
for all peers in Qi) signed from Qi in the exact same way
as its authorization request [p|paddr|tsi]. This ensures that
p can query the quorum for only one key (specifically, one
index in RT ), and query privacy of the key also remains
unaffected. This additional one round does not change the
message complexity of the protocol. We do not include this
defense mechanism in the protocol described in Figure 3, as
repercussions of this attack, if any, may vary from system
to system.

In our RCPqp-II protocol, similar crawling is possible. The
adversary peer p may query different peers in quorum Qi for
different indices to obtain the completeRT for Qi. However,
unlike in RCPqp-I, a malicious peer p has to increase its effort
linearly to obtain the complete RT of Qi in RCPqp-II and
crawling is not an effective attack for the malicious peer p.

In both protocols, it is possible for a malicious peer p to
alter the queried key while shifting from one quorum to the
next, as there is no link between signed authorizations and
the queried keys for privacy reasons. This may, however, lead
to a peer p gaining more knowledge as it can continuously
modify its key to traverse as much of the DHT as possible.
This is an even weaker crawling attack than the one men-
tioned above, as the adversary has to perform a significant
amount of work to gain any information.

Notice that any information gained by the adversary in the
above active attacks is still substantially smaller than infor-
mation effortlessly available to it when PIR or trivial PIR
are used. Finally, it may be possible to stop the adversary
p from gaining any additional information without reveal-
ing its key using computationally and communicationally
demanding cryptographic primitives such as zero-knowledge
proofs or conditional OT [15]. However, we find that their
inclusions are not essential, and may be even impractical,
for DHT-based systems.

7. CONCLUSION
In this paper, we have introduced the concept of query

privacy in the robust DHT architecture. We have enhanced
two existing robust communication protocols (RCP-I and
RCP-II) over DHTs to preserve the privacy of keys in DHT
queries using an OT protocol. We reviewed the OT liter-
ature and chose a theoretically non-optimal but practically



efficient (in terms of use over DHTs in practice) OT scheme.
Using this, we built two protocols (RCPqp-I and RCPqp-II),
which obtain query privacy without any significant increase
in computation costs and message complexity in practice.
Our privacy-preserving mechanism does not change the un-
derlying protocols’ utility or efficacy in any way, and is also
be applicable to other DHT communication architectures.
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APPENDIX
A. THE OBLIVIOUS TRANSFER PROTO-

COL
In this appendix, we provide an overview of the 1-out-of-ν

OT protocol of Naor and Pinkas [32]. Security of the con-
struction is based on DDH in a group G of prime order |G|.
The proof of security uses the random oracle model, i.e. the
protocol uses a cryptographic hash function, H, which is
then replaced by the random oracle in the proof. Recall that
the goal is for the server, q, to offer ν strings, S1, . . . , Sν , and
for chooser p to obtain the desired one, Sρ, and nothing else.
The basic idea of the [32] OT protocol is to let p provide en-
cryption keys PKi for 1 ≤ i ≤ ν; these are constructed
such that p can know at most one of the decryption keys.
The server then supplies p with encryptions of each Si under
PKi. Details are included in a protocol flow below in Fig-
ure 5. we now elaborate on the intuition behind the three
messages:

1. OT-setup: q picks a random DL instance, α = gr and
sends this to p. Moreover, the parties agree on ν − 1
random group elements, C2, . . . , Cν . It is crucial that
p does not know their DL, hence they are picked by q
(who is allowed but not required to know the DL).

2. OT-request : p will supplies PK1 to q; for 1 < i ≤ ν
PKi is implicitly set to Ci/PK1. p constructs PK1

such that PKρ has known DL; however, if p could find
the DL of any other key, PKi, p could solve a DDH
problem in G.

3. OT-response: q computes PKr
i = Cri /PK

r
1 for all i.

Since the Cri may be precomputed this requires only
a single exponentiation and ν − 1 multiplications. q
then picks a uniformly random `-bit string, R, where `
is chosen large enough (e.g. 200 bits) to ensure that R
will be distinct. Finally, for each 1 ≤ i ≤ ν q computes
an encryption of Si as Ei = H(PKr

i , R, i)⊕ Si. R and
the Ei are sent to p, who computes first PKr

ρ = αk and
then decrypts to obtain Sρ = Eρ ⊕H(PKr

ρ , R, ρ).

For more details along with the proof in the random oracle
model, see [32]. As noted, α and the Cri may be prepro-
cessed during periods of low computational load. Moreover,
the values may be used in multiple instances of the OT pro-
tocol. “Refreshing” r (i.e. α and the Cri ) every ν execution
provides an amortized complexity of two exponentiations per
party per OT invocation. The setup message consists of ν
group elements, while the OT-request contains only a sin-
gle one. Finally, the reply consists of ν Eis plus R; though
strictly speaking, these are not group elements, they may be
viewed as such for the complexity analysis. Hence, overall
communications is 2ν + 2 group elements.

We remark that since we are transferring AES keys using
OT, we could also directly use (some digest of) PKr

i , R, i as
the AES key. However, such ad hoc optimizations may eas-
ily introduce subtle flaws. The security proof of Naor and
Pinkas may easily be invalidated by even a minor optimiza-
tion, hence, as the gains are marginal, we prefer the original
OT protocol to any ad hoc optimization.



Setup (for ν invocations)
peer p peer q

⇐=

Pick r ∈ Z|G| uniformly at random and com-
pute α = gr; for 1 < i ≤ ν pick Ci uniformly
at random in G and compute Cri . Send α and
C2, . . . , Cν to p.

Online (single invocation)
peer p requesting Sρ peer q holding S1, . . . , Sν

Pick k ∈ Z|G| uniformly at random and com-

pute PKρ = gk. If ρ 6= 1 compute PK1 =
Cρ/PKρ. Send PK1 to q.

=⇒

⇐=

Compute PKr
1 ; then for 1 < i ≤ ν compute

PKr
i = Cri /PK

r
1 . Pick a random string R and

for 1 ≤ i ≤ ν compute an encryption of Si,
H(PKr

i , R, i)⊕ Si; send all ν encryptions to p
along with R.

Compute first PKr
ρ = αk and then

H(PKr
ρ , R, ρ); use this to decrypt the ρth en-

cryption and output the plaintext, Sρ.

Figure 5: The 1-out-of-ν OT protocol of Naor and Pinkas


