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ABSTRACT
Peer-to-peer distributed hash tables (DHTs) rely on volunteers to

contribute their computational resources, such as disk space and

bandwidth. In order to incentivize these node operators of privacy-

preserving DHTs, it is important to prevent exposing them to the

data that is stored on the DHT and/or queried for. Vasserman et

al.’s CROPS aimed at providing plausible deniability to server nodes

by encrypting stored content. However, node operators are still

exposed to the contents of queries. We provide an architecture

that uses information-theoretic private information retrieval to effi-

ciently render a server node incapable of determining what content

was retrieved in a given request by a user. We simulate our sys-

tem and show that it has a small communication and performance

overhead over other systems without this privacy guarantee, and

significantly smaller overheads than the closest related work.

CCS CONCEPTS
• Social and professional topics → Technology and censor-
ship; • Security and privacy→ Privacy-preserving protocols.

KEYWORDS
Censorship-resistant publishing; query privacy; private information

retrieval

ACM Reference Format:
Miti Mazmudar, Stan Gurtler, and Ian Goldberg. 2021. Do You Feel a Chill?

Using PIR against Chilling Effects for Censorship-resistant Publishing. In

Proceedings of the 20th Workshop on Privacy in the Electronic Society (WPES
’21), November 15, 2021, Virtual Event, Republic of Korea. ACM, New York,

NY, USA, 5 pages. https://doi.org/10.1145/3463676.3485612

1 INTRODUCTION
Censorship-resistant systems allow users access to online content

when direct access to such content is restricted by a nation-state

adversary, namely a censor. For instance, Tor [5] is an anonymity

network that supports users in accessing websites that are censored

by nation-states. Censorship-resistant publishing (CRP) systems
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allow publishers to submit their work to multiple servers, or nodes,
such that a censor cannot take down or tamper with the published

content. Several censorship-resistant publishing systems have been

proposed, such as Vasserman et al.’s CROPS [14], Waldman and

Mazières’ Tangler [16] and Stubblefield and Wallach’s Dagster [13].

CRP systems are commonly built atop structured peer-to-peer

(P2P) networks, as they support redundancy and do not suffer from

a single point of failure. Structured P2P networks link peer nodes’

identifiers to the content that they store and use distributed hash

tables (DHTs) for routing search and insertion queries.

Node operators within the censor’s region of influence may be

legally obliged to report any prohibited content that is stored on

their machines, or that is requested by users in queries. Many node

operators would thus rather not learn the content that they are

storing or the content of the queries that they are receiving. The

aforementioned systems support node operators in plausibly deny-
ing any knowledge of the content that they store, by encrypting

chunks of publishers’ documents and storing key material sepa-

rately from these chunks. Within Vasserman et al.’s CROPS, these

chunks are indexed by hashes of keywords that describe the doc-

ument. However, as the keywords’ hashes are exposed in clients’

queries, these node operators can no longer plausibly deny knowing

what content was queried.

We provide plausible deniability over queried content, by inte-

grating Private Information Retrieval (PIR) for DHTs. We begin

with a description of the building blocks we use, namely PIR, DHTs,

and CRP systems, in Section 2. We discuss robust DHTs, includ-

ing related work in query privacy over DHTs, in Section 3, and

describe our threat model in Section 4. In Section 5 we provide an

architecture allowing users to retrieve documents from the network

without revealing what document was retrieved to the target node

that stores the document, nor to any in-path nodes. We simulate the

latency and throughput overheads of our system, to demonstrate

its viability for deployment in Section 6.

2 BACKGROUND
In this section, we describe the building blocks used in our sys-

tem, namely private information retrieval (PIR), distributed hash

tables (DHTs) and attacks on them, as well as censorship-resistant

publishing systems (CRPS) with a focus on plausible deniability.

Private InformationRetrieval (PIR). PIR allows public databases,

held by one or more untrusted servers, to be queried by clients while

guaranteeing that the servers cannot learn which record was ac-

cessed. Information-theoretic PIR (IT-PIR) schemes require multiple

servers, each of which have copies of the database [4] and they do

not require any computational hardness assumptions. In IT-PIR

schemes, the client constructs one query per server and using the
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responses to these queries, it can reconstruct the desired record of

the database. A certain threshold number of these servers must not

share the queries they receive, or else they could reconstruct the

desired record. This is known as the non-collusion assumption. We

use Goldberg’s IT-PIR scheme [7] as it is robust against failing and

Byzantine nodes, both of which exist in P2P networks.

DHTs. A file that is to be stored in a structured P2P network has

a collision-resistant one-way hash, typically of its contents, as its

identifier. A node on structured P2P networks also has a truncated

one-way hash as its identifier; such a node stores all files whose

identifiers, when truncated, are equal to the identifier of the node.

Each node in a structured P2P network maintains a routing table,
which consists of node identifiers and their routing information

for a small number of other nodes in the DHT. In order to search

for or insert a file, nodes obtain the routing information for the

relevant node identifiers by querying one of its neighbours and then

querying one of that neighbour’s neighbours, and so on, through

iterative routing. DHTs guarantee that for a network of size n, any
node can reach any other node in at most O(logn) steps.

Censorship-resistant publishing. Censorship-resistant publish-
ing (CRP) systems, such as Waldman and Mazières’ Tangler [16],

Waldman et al.’s Publius [17], and Vasserman et al.’s CROPS [15],

support publishing and retrieving documents in the face of a censor

that may attempt to take down prohibited content. CRP systems

are built atop DHTs formed by machines that are located across

different administrative regions. However, DHTs by themselves do

not ensure the confidentiality, integrity, or availability of the con-

tent stored on them; CRP systems include mechanisms to publish

and retrieve documents while providing confidentiality, integrity,

and availability. We focus on CROPS as a use case for our system.

CROPS first encrypts a document to preserve its confidential-

ity. Additionally, encryption supports node operators in plausibly
denying knowledge of the content they store. CROPS helps users

easily discover content on the system through keywords. As the

client’s file retrieval query includes keyword hashes, the censor

may legally oblige the node operator to reveal all queries that it

received. The censor may then determine if any of the keyword

hashes in a query match those of prohibited keywords [8, 9]. It

may also require the node operator to report the network addresses

of all users, and possibly harm the users who attempted to fetch

prohibited content. Thus, simply providing plausible deniability

over stored content is insufficient; node operators should also be

prevented from learning what content is being retrieved.

3 ROBUST DHTS
DHTs have been known to be vulnerable to many attacks that pre-

vent a user from obtaining a copy of a file. Existing CRP systems do

not consider these attacks, and thus, do not integrate defences that

have been proposed against such attacks. A censor can easily exploit

these attacks, which we motivate below, to break the availability of

files stored on the overlay CRP system. For instance, a censor can

direct its new nodes to join at addresses that are close to a target

honest node, and restricts its view of the network, by redirecting

all routing requests to the these new nodes. Simply randomizing

new nodes’ identifiers is insufficient, as a censor can repeatedly

rejoin an incoming node until it is close to a target honest node.

Forming quorums. Several researchers [3, 6] have proposed proto-
cols to allocate joining nodes into quorums, such that by repeatedly

rejoining, any malicious nodes do not increase their chances of

being cast into a group with a majority of other such malicious

nodes. Awerbuch and Scheideler [1] propose a cuckoo rule joining

strategy, wherein incoming nodes cause existing nodes at nearby

addresses to be kicked out (or cuckooed) to other addresses. They

show that for a given global bound on the ratio of malicious to

honest nodes (say ϵ), their strategy results in approximately equally

sized quorums of s = O(logn) nodes, where the ratio of malicious to

honest nodes in each quorum is upper bounded by a value greater

than ϵ . Sen and Freedman [12] propose a commensal cuckoo joining
strategy, which modifies the cuckoo rule joining strategy so that

the network can withstand larger fractions of adversary-controlled

nodes. Their strategy also supports setting the desired average

quorum size beforehand, independent of the network size.

Robust routing across quorums. To resolve routing requests

across quorums, nodes in a quorum can reply back with the network

addresses of the nearest quorum to the target address, akin to

iterative routing in regular DHTs. However, malicious nodes in such

quorums may respond back with incorrect routing table entries, or

inundate honest nodes in other quorums with fake requests. Young

et al. [18] propose two efficient robust communication protocols

(RCP) that either detect or prevent spamming attacks from nodes

in other quorums by using a threshold signature scheme. In order

to communicate with a node in a target quorum, the client node

must obtain a time-stamped proof of robust communication from

one of the neighbours of that quorum, in the form of a threshold

signature of the neighbouring quorum.

Query privacy (QP) across quorums. The aforementioned proto-

cols only provide integrity guarantees over the routing information

within a quorum-based DHT. They do not provide confidentiality
of the routing query content; the node address being queried is

known to nodes on the path to the target node and to the target

node itself. The censor may thus compel all nodes in its region,

as they may serve as in-path nodes to other nodes, to reveal the

node addresses looked up by users in its region. Backes et al. [2]

improve on Young et al.’s protocols by hiding the queried key from

all in-path nodes, thereby providing query privacy (QP).

Their protocols use oblivious transfer (OT) [11] in which the

queried node sends the entry-wise encrypted data store over which

the query is to be conducted back to the client. To privately retrieve

a file stored in the file store of the target quorum, Backes et al.

suggest optionally extending their protocols with one more hop to

the target quorum. However, doing so would require sending the

entire encrypted file store back (D bytes) to the client, resulting

in a large communication complexity. Whereas, for a quorum of

s nodes, our scheme only has a complexity of 2s
√
D. In Table 1

we contrast the properties provided by Young et al., Backes et al.,

and our schemes to DHT clients and compare the communication

complexity for Backes et al.’s and our scheme in providing private

file retrieval.

4 THREAT MODEL
We model the censor as controlling a small fraction of Byzantine

nodes in the P2P network. For a network with n honest nodes, the



Table 1:Comparison of private and robust DHT communica-
tion with previous work. D is the total size (in bytes) of the
files stored at each node in an s-node quorum. RR = robust
routing; QP = In-path query privacy; PR = availability and,
if so, communication complexity, of private file retrieval.

System RR QP PR
Base DHT - - -

Young et al.’s RCP [18] - -

Backes et al.’s QP [2] w/o last hop -

Backes et al.’s QP [2] w/ last hop D

DHTPIR (our system) 2s
√
D

CROPS

DHTPIR

QUORUM PIRQP

RCP

Figure 1: The API interfaces required and provided by our
DHTPIR interface. Red labels our contribution. Grey labels
the layers of API required by our interface. White labels an
existing system which our interface can support.

censor may insert up to ϵ · n malicious nodes, where ϵ ≈ 0.02; it

can remove these nodes and have them rejoin the network, which

would allow the node to join a different quorum. The censor’s

Byzantine nodes may respond incorrectly to routing or content

retrieval requests. All Byzantine nodes within a quorum may col-

lude and share the latter requests, in an attempt to reconstruct a

client node’s query. These nodes may also simply fail to reply to

these requests or inundate honest nodes with them. The censor

may monitor network traffic in its region of influence. It can also

search for sensitive content by posing as a client and can map files

to virtual addresses of nodes that store them.

The censor’s goals are to determine which document was re-

trieved in a particular content retrieval request and to prevent

the operator from responding correctly to a request. Our interface

provides the following guarantees in the face of this adversary:

• Minimizing data within the content of document retrieval

queries — honest server operator nodes and small coalitions

of Byzantine nodes within a quorum do not learn which

document was retrieved.

• Correct responses to document retrieval requests — a doc-

ument retrieval request will be answered correctly, even if

censor-controlled nodes provide incorrect or no responses.

5 OUR DESIGN
Our interface can be used within censorship-resistant publishing

systems, such as Vasserman et al.’s CROPS [15], to insert files into

quorums and to search quorums privately for files. Algorithms for

both of these operations in the DHTPIR interface invoke existing

protocols in layers, depicted in Figure 1.

Both of these algorithms expect at least an identifier for the file

to be inserted or searched. They use this identifier to locate the file

within the DHT (as in regular DHTs), with the exception that in

our case, we wish to locate all nodes in a quorum; that is, a set of
nodes in the DHT, all of which will store the file. Specifically, both

algorithms use Backes et al.’s QP algorithms to obtain network ad-

dresses of the target quorum as well as cryptographic information

that serves three purposes: for the quorum to verify the client’s

communication request (a cryptographic proof of communication),

for the client to communicate confidentially with nodes in the quo-

rum (node encryption keys) as well as verify threshold signatures

over responses (quorum verification key).

For file retrieval operations, each quorum uses a perfect hash

function (PHF) to index files in its database. A client node first re-

trieves the PHF from one of the quorum’s nodes and then computes

the index of the desired file identifier. It computes and encrypts one

PIR query vector for each node of the quorum, following the afore-

mentioned Goldberg’s PIR protocol [7]. Each server node returns a

PIR response, which is used by the client to reconstruct the file.

Intuitively, for inserting a file into the target quorum, the client

needs to send its copy to each node in the target quorum. To pre-

serve the confidentiality and integrity of the file content, consider

a baseline wherein the client encrypts the file to each of the target

nodes. As an optimization, we send the encrypted file to one of the

target nodes, and delegate it to forward the file to all other nodes.

We account for Byzantine server and client nodes in our file

retrieval and insertion algorithms. For instance, a Byzantine server

node may return an invalid PHF or simply drop a file that it is

delegated to forward to other nodes. Therefore, the delegate node

returns a threshold signature over a hash of the inserted file or PHF

to the client. The client verifies this signature, using the quorum

verification key it obtained from the neighbouring quorum. This

quorum also shares a cryptographic proof of communication that

is used to prevent fake file insertion and retrieval requests. Addi-

tionally, with a given proof, (Byzantine) clients are rate limited to

only send one file insertion and one file retrieval request.

We parameterize the threshold for Goldberg’s IT-PIR scheme

such that Byzantine nodes in a quorum cannot reconstruct a PIR re-

sponse through collusion. Similarly, we parameterize the threshold

for Young et al.’s threshold signature scheme, such that Byzan-

tine nodes cannot produce enough valid signature shares through

collusion. Furthermore, these Byzantine nodes cannot prevent the

reconstruction of a threshold signature by simply failing to respond.

Finally, we ensure that honest nodes can efficiently reconstruct the

desired file, when a given fraction of nodes per quorum is Byzantine.

In our security analysis, which can be found in the extended

version of our paper [10], we find that the fractions of Byzantine

nodes in each quorum should be strictly less than 0.25 to satisfy

the requirements of Young et al.’s robust quorums, and Goldberg’s

IT-PIR scheme. We extend Sen and Freedman’s [12] simulation

and we estimate the maximum value of ϵ that can allow only b0 <
0.25 of each quorum to be malicious. When larger networks (n ≥

2
18
) were configured with an average quorum of 20 nodes, the

maximum observed quorum size was less than 75, and the network

can withstand ϵ up to 0.02.



6 EVALUATION
In DHTPIR, chunks of documents are stored as fixed-size L-byte
files. The communication and computation costs for retrieving a

file for our system must scale when the number of nodes (i.e., users)
that connect to the P2P network (n) increases, as well as when the

number of chunks that are stored in the network (FN ) increases.

We analysed our protocol in comparison with that of Backes et

al. [2], and found that we can expect our protocol to require a

smaller communication complexity for quorums than Backes et

al. when FN >
sn
L , where s is the number of nodes in a quorum.

This holds for most reasonable values of FN , as typically s ≪ L.
For further details, see the extended version of our paper [10].

To evaluate this complexity empirically, we have implemented a

simulation of our system. Our simulation code and output, as well

as additional graphs, can be found at https://git-crysp.uwaterloo.

ca/dhtpir/simulations.

In our simulation, one node serves as the client and creates FN
randomly generated document chunks of size 1 KiB. It stores each

chunk on the quorum identified by the chunk’s ID, then retrieves

each chunk from the network. Different subprotocols within the

system (namely, DHT, RCP, QP, OT, and PIR) are simulated as

individual layers. We examine the case where systems have q = 100

quorums, each containing s = 10 nodes. The RCP layer implements

Young et al.’s [18] RCP-II protocol. The QP layer implements Backes

et al.’s QP-II protocol. We examine both the case where Backes et

al.’s protocol includes OT at the last hop quorum (which we term

"RCP+QP+LastHop", or simply "LastHop"), and the case where it

does not (which we term "RCP+QP"). Finally, we use the following

estimates of network and computation speeds. We set the network

bandwidth to 50Mb/s, and the round-trip time (RTT) to 150ms. We

estimate the PIR computations to run at 4 GB/s, whereas encryption

operations run at 1GB/s (about 3 cycles/byte for AES-NI).

We highlight the comparison of throughputs between DHTPIR

and LastHop, which do protect the contents of queries, as well as

RCP+QP, which does not, in Figure 2. Specifically, Figure 2 mea-

sures the number of simultaneous clients’ file retrieval requests

that can be handled by the entire system at once. This encompasses

both request routing and file retrieval. This measurement is tracked

as the number of documents per quorum (FQ = FN /q) increases.
Note that in LastHop, as only a single delegate node in the target

quorum is needed to compute the OT response for any given re-

quest (and computing threshold signatures is much faster than the

OT computation), multiple nodes within a quorum can process dis-

tinct OT requests in parallel. For DHTPIR, each node in a quorum

participates in computing the PIR response for a single PIR request;

however, adding additional cores to nodes does allow for parallel

processing of multiple distinct PIR requests at once.

We can see in Figure 2 that DHTPIR preforms the same regardless

of the number of cores until FQ ≈ 2000. In fact, it stays network-

limited until this point, and after this point, adding another core

to nodes in the system results in a significant improvement in

throughput. This can be extrapolated to expand with database size,

and thus, DHTPIR affords opportunities to optimize its throughput

for nodes that store large databases through multi-core processing.

Even though individual nodes within a quorum in LastHop can

process different OT requests in parallel, LastHop incurs a large
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Figure 2: Measurement of the throughput of DHTPIR and
Backes et al.’s system, as the number of chunks stored in
each quorum increases, averaged over 25 simulation runs.
Note the logarithmic axes.

reduction in throughput as compared to RCP+QP, proportional

to the size of the database (FQ · L). LastHop’s low throughputs

here are largely the result of the bandwidth required to transmit

large amounts of data necessary for that protocol to implement

file retrieval, and additional cores would not be able to increase

these throughputs. DHTPIR achieves a throughput that is about two

orders of magnitude larger than LastHop, and this gap widens with

database size. Given this, our simulation provides us reasonable

grounds to believe in the efficiency of a DHTPIR implementation.

7 CONCLUSION
Censorship-resistant publishing systems are built atop DHTs and

enable users to store sensitive documents onto multiple server

nodes in different administrative regions, such that a censor cannot

easily take down or tamper with the published content. Server

node administrators may be compelled by censors to reveal the

documents retrieved by a given user. We propose an interface that

uses information-theoretic private information retrieval (IT-PIR) to

prevent node operators from being exposed to information about

which document was retrieved.

We integrate existing work on hardening peer-to-peer networks

so that quorums of nodes only contain at most a certain fraction

of Byzantine nodes. Our key insight lies in using quorums as a

coalition of server nodes that store a set of files over which IT-PIR

queries can be performed. We simulate our system and find that

its throughput is two orders of magnitude higher than the closest

related work and scales reasonably with the database size. We hope

that our design spurs further research and development efforts into

building robust censorship-resistant publishing systems.
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