A Secure Environment for Untrusted Helper Applications

Confining the Wily Hacker

lan Goldberg David Wagner

Randi Thomas Eric A. Brewer

{iang,daw,randit,brewer}@cs.berkeley.edu
University of California, Berkeley

Abstract

Many popular programs, such as Netscape, use un-
trusted helper applications to process data from the
network. Unfortunately, the unauthenticated net-
work data they interpret could well have been cre-
ated by an adversary, and the helper applications are
usually too complex to be bug-free. This raises sig-
nificant security concerns. Therefore, it is desirable
to create a secure environment to contain untrusted
helper applications. We propose to reduce the risk
of a security breach by restricting the program’s ac-
cess to the operating system. In particular, we inter-
cept and filter dangerous system calls via the Solaris
process tracing facility. This enabled us to build a
simple, clean, user-mode implementation of a secure
environment for untrusted helper applications. Our
implementation has negligible performance impact,
and can protect pre-existing applications.

1 Introduction

Over the past several years the Internet environment
has changed drastically. This network, which was
once populated almost exclusively by cooperating re-
searchers who shared trusted software and data, is
now inhabited by a much larger and more diverse
group that includes pranksters, crackers, and busi-
ness competitors. Since the software and data ex-
changed on the Internet is very often unauthentic-
ated, it could easily have been created by an ad-
versary.

Web browsers are an increasingly popular tool for
retrieving data from the Internet. They often rely
on helper applications to process various kinds of
information. These helper applications are security-
critical, as they handle untrusted data, but they are
not particularly trustworthy themselves. Older ver-
sions of ghostscript, for example, allowed mali-

cious programs to spawn processes and to read or
write an unsuspecting user’s files [15, 18, 19, 34, 36].
What is needed in this new environment, then, is
protection for all resources on a user’s system from
this threat.

Our aim is to confine the untrusted software and data
by monitoring and restricting the system calls it per-
forms. We built Janus', a secure environment for
untrusted helper applications, by taking advantage
of the Solaris process tracing facility. Our primary
goals for the prototype implementation include se-
curity, versatility, and configurability. Our proto-
type is meant to serve as a proof-of-concept, and we
believe our techniques may have a wider application.

2 Motivation

2.1 The threat model

Before we can discuss possible approaches to the
problem, we need to start by clarifying the threat
model. Web browsers and .mailcap files make it
convenient for users to view information in a wide
variety of formats by de-multiplexing documents to
helper applications based on the document format.
For example, when a user downloads a Postscript
document from a remote network site, it may be
automatically handled by ghostview. Since that
downloaded data could be under adversarial control,
it is completely untrustworthy. We are concerned
that an adversary could send malicious data that sub-
verts the document viewer (through some unspecified
security bug or misfeature), compromising the user’s
security. Therefore we consider helper applications
untrusted, and wish to place them outside the host’s
trust perimeter.

1Janus is the Roman god of entrances and exits, who had
two heads and eternally kept watch over doorways and gate-
ways to keep out intruders.

We believe that this is a prudent level of para-
noia. Many helper programs were initially envi-
sioned as a viewer for a friendly user and were not
designed with adversarial inputs in mind. Further-
more, ghostscript implements a full programming
language, with complete access to the filesystem,;
many other helper applications are also very gen-
eral. Worse still, these programs are generally big
and bloated, and large complex programs are notori-
ously insecure.? Security vulnerabilities have been
exposed in these applications [15, 18, 19, 34, 36].

2.2 The difficulties

What security requirements are demanded from a
successful protection mechanism? Simply put, an
outsider who has control over the helper application
must not be able to compromise the confidentiality,
integrity, or availability of the rest of the system,
including the user’s files or account. Any damage
must be limited to the helper application’s display
window, temporary files and storage, and associated
short-lived objects. In other words, we insist on the
Principle of Least Privilege: the helper application
should be granted the most restrictive collection of
capabilities required to perform its legitimate duties,
and no more. This ensures that the damage a com-
promised application can cause is limited by the re-
stricted environment in which it executes. In con-
trast, an unprotected Unix application that is com-
promised will have all the privileges of the account
from which it is running, which is unacceptable.

Imposing a restricted execution environment on
helper applications is more difficult than it might
seem. Many traditional paradigms such as the refer-
ence monitor and network firewall are insufficient on
their own, as discussed below. In order to demon-
strate the difficulty of this problem and appreciate
the need for a novel solution, we explore several pos-
sible approaches.

BUILDING SECURITY DIRECTLY INTO EACH HELPER
APPLICATION: Taking things to the extreme, we
could 1nsist all helper applications be rewritten in a
simple, secure form. We reject this as completely un-
realistic; it is simply too much work to re-implement
them. More practically, we could adopt a react-
ive philosophy, recognizing individual weaknesses as
each appears and engineering security patches one
at a time. Historically, this has been a losing battle,
at least for large applications: for instance, explore

?For instance, ghostscript is more than 60,000 lines of C;
and mpeg_play is more than 20,000 lines long.

the sad tale of the sendmail “bug of the month”
[1,2,3,4,8,9,10, 11, 12, 13, 14, 16]. In any event,
attempts to build security directly into the many
helper applications would require each program to
be considered separately—mnot an easy approach to
get right.
ful programs which offer only minimal assurances of

For now, we are stuck with many use-

security; therefore what we require is a general, ex-
ternal protection mechanism.

ADDING NEW PROTECTION FEATURES INTO THE
OS: We reject this design for several reasons.
First, it is inconvenient. Development and install-
ation both require modifications to the kernel. This
approach, therefore, has little chance of becoming
widely used in practice. Second, wary users may
wish to protect themselves without needing the as-
sistance of a system administrator to patch and
recompile the operating system. Third, security-
critical kernel modifications are very risky: a bug
could end up allowing new remote attacks or al-
low a compromised application to subvert the en-
tire system. The chances of exacerbating the current
situation are too high. Better to find a user-level
mechanism so that users can protect themselves, and
so that pre-existing access controls can serve as a
backup; even in the worst case, security cannot de-
crease.

THE PRE-EXISTING REFERENCE MONITOR: The
traditional operating system’s monolithic reference
monitor cannot protect against attacks on helper ap-
plications directly. At most, it could prevent a pen-
etration from spreading to new accounts once the
browser user’s account has been compromised, but
by then the damage has already been done. In prac-
tice, against a motivated attacker most operating sys-
tems fail to prevent the spread of penetration; once
one account has been subverted, the whole system
typically falls in rapid succession.

THE CONVENTIONAL NETWORK FIREWALL: Packet
filters cannot distinguish between different types of
HTTP traffic, let alone analyze the data for security
threats. A proxy could, but it would be hard-pressed
to understand all possible file formats, interpret the
often-complex application languages, and squelch all
dangerous data. This would make for a very complex
and thus untrustworthy proxy.

We therefore see the need for a new, simple, and
general user-level protection mechanism that does
not require modification of existing helper applica-
tions or operating systems. The usual techniques
and conventional paradigms do not work well in this
situation. We hope that the difficulty of the problem

and the potential utility of a solution should help to
motivate interest in our project.

3 Design

Our design, in the style of a reference monitor, cen-
ters around the following basic assumption:

AN APPLICATION CAN DO LITTLE HARM IF
ITS ACCESS TO THE UNDERLYING
OPERATING SYSTEM IS APPROPRIATELY
RESTRICTED.

Our goal, then, was to design a user-level mechanism
that monitors an untrusted application and disallows
harmful system calls.

A corollary of the assumption is that an applica-
tion may be allowed to do anything it likes that
does not involve a system call. This means it may
have complete access to its address space, both code
and data. Therefore, any user-level mechanism we
provide must reside in a different address space. Un-
der Unix, this means having a separate process.

One of our basic design goals was SECURITY. The
untrusted application should not be able to access
any part of the system or network for which our pro-
gram has not granted it permission. We use the
term sandbozing to describe the concept of confin-
ing a helper application to a restricted environment,
within which it has free reign. This term was first
introduced, in a slightly different setting, in [35].

To achieve security, a slogan we kept in mind was
“keep it simple” [29]. Simple programs are more
likely to be secure; simplicity helps to avoid bugs,
and makes it easier to find those which creep in [17,
Theorem 1]. We would like to keep our program
simpler than the applications that would run under
it.

Another of our goals was VERSATILITY. We would
like to be able to allow or deny individual system
calls flexibly, perhaps depending on the arguments
to the call. For example, the open system call could
be allowed or denied depending on which file the ap-
plication was trying to open, and whether it was for
reading or for writing.

Our third goal was CONFIGURABILITY. Different
sites have different requirements as to which files the

application should have access, or to which hosts it
should be allowed to open a TCP connection. In
fact, our program ought to be configurable in this
way even on a per-user or per-application basis.

On the other hand, we did not strive for the criteria
of safety or portability of applications. By safety, we
mean protecting the application from its own bugs.
We allow the user to run any program he wishes,
and we allow the executable to play within its own
address space as much as it would like.

We adopted for our program, then, a simple, modu-
lar design:

e a framework, which is the essential body of the
program, and

e dynamic modules, used to implement various as-
pects of a configurable security policy by filter-
ing relevant system calls.

The framework reads a configuration file, which can
be site-, user-, or application-dependent. This file
lists which of the modules should be loaded, and may
supply parameters to them. For example, the config-
uration line

path allow read,write /tmp/*

would load the path module, passing it the para-
meters “allow read,write /tmp/*” at initializa-
tion time. This syntax is intended to allow files under
/tmp to be opened for reading or writing.

Each module filters out certain dangerous system
call invocations, according to its area of specializ-
ation. When the application attempts a system call,
the framework dispatches that information to relev-
ant policy modules. Each module reports its opinion
on whether the system call should be permitted or
quashed, and any necessary action is taken by the
framework. We note that, following the Principle of
Least Privilege, we let the operating system execute
a system call only if some module explicitly allows
it; the default is for system calls to be denied. This
behavior is important because 1t causes the system
to err on the side of security in case of an under-
specified security policy.

Each module contains a list of system calls that it
will examine and filter. Note that some system calls
may appear in several modules’ lists. A module may
assign to each system call a function which validates
the arguments of the call before the call is executed

3 The function can then

by the operating system.
use this information to optionally update local state,
and then suggest allowing the system call, suggest
denying it, or make no comment on the attempted

system call.

The suggestion to allow is used to indicate a mod-
ule’s explicit approval of the execution of this system
call. The suggestion to deny indicates a system call
which is to be denied execution. Finally, a “no com-
ment” response means that the module has no input
as to the dispatch of this system call.

Modules are listed in the configuration file from most
general to most specific, so that the last relevant
module for any system call dictates whether the call
is to be allowed or denied. For example, a suggestion
to allow countermands an earlier denial. Note that
a “no comment” response has no effect: in particu-
lar, it does not override an earlier “deny” or “allow”
response.

Normally, when conflicts arise, earlier modules are
overridden by later ones. To escape this behavior,
for very special circumstances modules may unequi-
vocally allow or deny a system call and explicitly in-
sist that their judgement be considered final. In this
case, no further modules are consulted; a “super-
allow” or “super-deny” cannot be overridden. The
intent is that this feature should be used quite rarely,
for only the most critical of uses. Write access to
.rhosts could be super-denied near the top of the
configuration file, for example, to provide a safety
net in case we accidentally miswrite a subsequent
file access rule.

In designing the framework we aimed for simplicity
and versatility as much as possible, though these
goals often conflict. One can imagine more versat-
ile and sophisticated algorithms to dispatch system
calls, but they would come at a great cost to simpli-
city.

4 Implementation

4.1 Choice of operating system

In order to implement our design, we needed to find
an operating system that allowed one user-level pro-
cess to watch the system calls executed by another

3In addition, a module can assign to a system call a similar
function which gets called after the system call has executed,
just before control is returned to the helper application. This
function can examine the arguments to the system call, as well
as the return value, and update the module’s local state.

process, and to control the second process in various
ways (such as causing selected system calls to fail).

Luckily, most operating systems have a process-
tracing facility, intended for debugging. Most op-
erating systems offer a program called trace(1),
strace(1), or truss(1) which can observe the sys-
tem calls performed by another process as well as
their return values. This is often implemented with
a special system call. ptrace(2), which allows
the tracer to register a callback that is executed
whenever the tracee issues a system call. Unfortu-
nately, ptrace offers only very coarse-grained all-or-
nothing tracing: we cannot trace a few system calls
without tracing all the rest as well. Another disad-
vantage of the ptrace(2) interface is that many OS
implementations provide no way for a tracing pro-
cess to abort a system call without killing the traced
process entirely.

Some more modern operating systems, such as Sol-
aris 2.4 and OSF/1, however, offer a better process-
tracing facility through the /proc virtual filesystem.
This interface allows direct control of the traced pro-
cess’s memory. Furthermore, it has fine-grained con-
trol: we can request callbacks on a per-system call
basis.

There are only slight differences between the Solaris
and the OSF/1 interfaces to the /proc facility. One
of them is that Solaris provides an easy way for the
tracing process to determine the arguments and re-
turn values of a system call performed by the traced
process. Also, Solaris operating system is somewhat
more widely deployed. For these reasons, we chose
Solaris 2.4 for our implementation.

4.2 The policy modules

4.2.1 Overview

The policy modules are used to select and imple-
ment security policy decisions. They are dynam-
ically loaded at runtime, so that different security
policies can be configured for different sites, users,
or applications. We implemented a sample set of
modules that can be used to set up the traced ap-
plication’s environment, and to restrict its ability to
read or write files, execute programs, and establish
TCP connections. In addition, the traced applic-
ation is prevented from performing certain system
calls, as described below. The provided modules of-
fer considerable flexibility themselves, so that may
configure them simply by editing their parameters in
the configuration file. However, if different modules

are desired or required, it is very simple to compile
new ones.

Policy modules need to make a decision as to which
system calls to allow, which to deny, and for which
a function must be called to determine what to do.
The first two types of system calls are the easiest to

handle.

Some examples of system calls that are always al-
lowed (in our sample modules) are close, exit,
fork, and read. The operating system’s protection
on these system calls 1s sufficient for our needs.

Some examples of system calls that are always denied
(in our sample modules) are ones that would not suc-
ceed for an unprivileged process anyway, like setuid
and mount, along with some others, like chdir, that
we disallow as part of our security policy.

The hardest system calls to handle are those for
which a function must, in general, be called to de-
termine whether the system call should be allowed
or denied. The majority of these are system calls
such as open, rename, stat, and kill whose argu-
ments must be checked against the configurable se-
curity policy specified in the parameters given to the
module at load time.

4.2.2 Sample security policy

We implemented a sample security policy to test our
ideas, as a proof of concept.

Helper applications are allowed to fork children, we
then recursively trace. Traced processes can only
send signals to themselves or to their children, and
never to an untraced application. Environment vari-
ables are initially sanitized, and resource usage is
carefully limited.

In our policy, access to the filesystem is severely lim-
ited. A helper application is placed in a particular
directory; it cannot chdir out of this directory. We
allow it full access to files in or below this directory;
to prevent escape from this sandbox directory, ac-
cess to paths containing .. are always denied. The
untrusted application is allowed read access to cer-
tain carefully controlled files referenced by absolute
pathnames, such as shared libraries and global con-
figuration files. We concentrate all access control
in the open system call, and always allow read and
write calls; this is safe, because write is only use-
ful when used on a file descriptor obtained from a
system call like open. This approach simplifies mat-
ters, and also allows us a performance optimization

further down the line; see Section 4.4.

Of course, protecting the filesystem alone is not
enough. Nearly any practical helper application will
require access to network resources. For example,
all of the programs we considered need to open a
window on the X11 display to present document con-
tents. In our security policy, network access must be
carefully controlled: we allow network connections
only to the X display, and this access is allowed only
through a safe X proxy.

X11 does not itself provide the security services we
require (X access control is all-or-nothing). A rogue
X client has full access to all other clients on the
same server, so an otherwise confined helper applic-
ation could compromise other applications if it were
allowed uncontrolled access to X. Fortunately the
firewall community has already built several safe X
proxies that understand the X protocol and filter out
dangerous requests [26, 31]. We integrated our Janus
prototype with Xnest [31], which lets us run another
complete instance of the X protocol under Xnest.
Xnest acts as a server to its clients (e.g. untrus-
ted helper applications), but its display is painted
within one window managed by the root X server.
In this way, untrusted applications are securely en-
capsulated within the child Xnest server and cannot
escape from this sandbox display area or affect other
normal trusted applications. Xnest is not ideal—it is
not as small or simple as we would like—but further
advances in X protocol filtering are likely to improve
the situation.

4.2.3 Sample modules

Our modules implementing this sample policy are
as follows. The basic module supplies defaults
for the system calls which are easiest to analyze,
and takes no configuration parameters. The putenv
module allows one to specify environment variable
settings for the traced application via its paramet-
ers; those which are not explicitly mentioned are
unset. The special parameter display causes the
helper application to inherit the parent’s DISPLAY.
The tcpconnect module allows us to restrict TCP
connections by host and/or port; the default is to
disallow all connections. The path module, the most
complicated one, lets one allow or deny file accesses
according to one or more patterns.

Because this policy is just an example, we have not
gone into excruciating detail regarding the specific
policy decisions implemented in our modules.

Our sample configuration file for this policy can be
seen in Figure 2 in the Appendix.

4.3 The framework

4.3.1 Reading the configuration file

The framework starts by reading the configuration
file, the location of which can be specified on the
command line. This configuration file consists of
lines like those shown in Figure 2: the first word
is the name of the module to load, and the rest of
the line acts as a parameter to the module.

For each module specified in the configuration file,
dlopen(3x) is used to dynamically load the module
into the framework’s address space. The module’s
init () function is called, if present, with the para-
meters for the module as its argument.

The list of system calls and associated values and
functions in the module is then merged into the
framework’s dispatch table. The dispatch table is an
array, indexed by system call number, of linked lists.
Each value and function in the module is appended
to the list in the dispatch table that is indexed by the
system call to which it is associated.

The result, after the entire configuration file has been
read, is that for each system call, the dispatch table
provides a linked list that can be traversed to decide
whether to allow or deny a system call.

4.3.2 Setting up the traced process

After the dispatch table is set up, the framework gets
ready to run the application that is to be traced: a
child process is fork()ed, and the child’s state is
cleaned up. This includes setting a umask of 077,
setting limits on virtual memory use, disabling core
dumps, switching to a sandbox directory, and closing
unnecessary file descriptors. Modules get a chance
to further initialize the child’s state; for instance, the
putenv module sanitizes the environment variables.
The parent process waits for the child to complete
this cleanup, and begins to debug the child via the
/proc interface. It sets the child process to stop
whenever it begins or finishes a system call (actu-
ally, only a subset of the system calls are marked in
this manner; see Section 4.4, below). The child waits
until it is being traced, and executes the desired ap-
plication.

In our sample security policy, the application is con-

fined to a sandbox directory. By default, this dir-
ectory is created in /tmp with a random name, but
the SANDBOX DIR environment variable can be used
to override this choice.

4.3.3 Running the traced process

The application runs until it performs a system call.
At this point, it is put to sleep, and the tracing
process wakes up. The tracing process determines
which system call was attempted, along with the ar-
guments to the call. It then traverses the appropriate
linked list in the dispatch table, in order to determine
whether to allow or to deny this system call.

If the system call is to be allowed, the tracing pro-
cess simply wakes up the application, which proceeds
to complete the system call. If, however, the sys-
tem call is to be denied, the tracing process wakes
up the application with the PRSABORT flag set. This
causes the system call to abort immediately, return-
ing a value indicating that the system call failed and
setting errno to EINTR. In either case, the tracing
process goes back to sleep.

The fact that an aborted system call returns EINTR to
the application presents a potential problem. Some
applications are coded in such a way that, if they
receive an EINTR error from a system call, they will
retry the system call. Thus, if such a application
tries to execute a system call which is denied by the
security policy, it will get stuck in a retry loop. We
detect this problem by noticing when a large num-
ber (currently 100) of the same system call with the
same arguments are consecutively denied. If this oc-
curs, we assume the traced application is not going
to make any further progress, and just kill the ap-
plication entirely, giving an explanatory message to
the user. We would prefer to be able to return other
error codes (such as EPERM) to the application, but
Solaris does not support that behavior.

When a system call completes, the tracing process
has the ability to examine the return value if it so
wishes. If any module had assigned a function to
be executed when this system call completes, as de-
scribed above, 1t is executed at this time. This facil-
ity 1s not widely used, except in one special case.

When a fork() or vfork() system call completes,
the tracing process checks the return value and then
fork()s itself. The child of the tracing process then
detaches from the application, and begins tracing the
application’s child. This method safely allows the
traced application to spawn a child (as ghostview

spawns gs, for example) by ensuring that all children
of untrusted applications are traced as well.

We have not aimed for extensive auditing, but log-
ging of the actions taken by the framework would be
easy to add to our implementation if desired.

We should point out that the Solaris tracing facilit-
ies will not allow a traced application to exec() a
setuid program. Furthermore, traced programs can-
not turn off their own tracing.

4.4 The optimizer

Our program has the potential to add a non-
trivial amount of overhead to the traced application
whenever it intercepts a system call. In order to keep
this overhead down, we obviously want to intercept
as few system calls as possible—or at least, as few of
the common ones as possible. However, we do not
wish to give up security to gain performance.

Therefore, we apply several optimizations to the sys-
tem call dispatch table before the untrusted helper
application executes. We note that one common case
arises when a module’s system call handler always
returns the same allow/deny value (and leaves no
side effects); this special case allows us to remove
redundant values in the dispatch table.

The most important optimization observes that cer-
tain system calls, such as write, are always allowed,;
so we need not register a callback with the OS for
them. This avoids the extra context switches to and
from the tracing process each time the traced ap-
plication makes such a system call, and thus those
system calls can execute at full speed as though
there were no tracing or filtering. By eliminating the
need to trace common system calls such as read and
write, we can greatly speed up the common case.

5 Evaluation

The general population is more interested in effi-
ciency and convenience than in security, so any se-
curity product intended for general use must address
these concerns. For this reason, we evaluate our
prototype implementation by a number of criteria,
including security, applicability, and ease of use, in
addition to performance.

5.1 Ease of use

The secure environment is relatively easy to install.
All that is needed is to protect the invocation of any
helper application with our environment. The most
convenient solution is to specify our janus program
in a mailcap file, which could look like

image/#*; janus xv %s
application/postscript; janus ghostview %s
video/mpeg; janus mpeg_play %s

video/*; janus xanim %s

With little effort, a system administrator could set
up the in-house security policy by listing janus in
the default global mailcap file; then the secure en-
vironment would be transparent to all the users on
the system. Similarly, users could protect themselves
by doing the same to their personal .mailcap file.

5.2 Applicability

Users will want to run our secure environment with
pre-existing helper applications. We tested a number
of programs under our secure environment, includ-
ing ghostview, mpeg play, xdvi, xv, and xanim.
Though we followed the Principle of Least Privilege
and were very restrictive in our security policy, we
found that each of the applications had sufficient
privilege, and we had not unduly restricted the ap-
plications from doing their legitimate intended jobs.

In addition, we ran the shells sh and bash under
our secure environment. Unless the user explicitly
tries to violate the security policy (e.g., by writing
to .rhosts), there is no indication of the restricted
nature of the shell. Attempts to violate the security
policy are rewarded with a shell error message.

5.3 Security

There is no universally accepted way to assess
whether our implementation is secure; however, there
are definite indications we can use to make this de-
cision.

We believe in security through simplicity, and this
was a guiding principle throughout the design and
implementation process. Our entire implementation
consists of approximately 2100 lines of code: the
framework has 800, and the modules have the re-
maining 1300. Furthermore, we have attempted to
minimize the amount of security-critical state where

possible. Since the design concept is a simple one,
and because the entire program is small, the imple-
mentation is easier to understand and to evaluate.
Thus, there is a much smaller chance of having an
undetected security hole.

We performed some simple sanity checks to verify
that our implementation appropriately restricts ap-
plications. More work on assurance is needed.

Most importantly, the best test is outside scrutiny
by independent experienced security researchers; a
detailed code review would help improve the assur-
ance and security offered by our secure environment.
All are encouraged to examine our implementation
for flaws.

5.4 Performance

Since our design potentially adds time-consuming
context switches for every system call the untrus-
ted application makes, the obvious performance met-
ric to evaluate is time. We measured the peak per-
formance of ghostscript and mpeg_play, two large
commonly used helper applications, under our secure
environment. Note that mpeg _play in particular is
performance critical.

mpeg play was used to display nine mpeg movies
ranging in size from 53 KB (18 frames) to 740 KB
(400 frames). ghostscript was used to display
seven Postscript files ranging in size from 9 KB to
1.7 MB. ghostscript was run non-interactively, so
that all the pages in the Postscript file were dis-
played in succession with no user intervention. We
took 100 measurements for each file, 50 traced under
our secure environment and 50 untraced, calculating
the mean and standard deviation for each set. The
measurements were done using an unloaded single-
processor SPARCstation 20 workstation running Sol-
aris 2.4. The Xnest X windows proxy [31] was used
with the secure environment, but not with the un-
traced measurements.

The results are displayed in Figure 1. For each
set, we plotted the traced time against the untraced
time.* The boxes around the data points indicate
one standard deviation. The diagonal line shows the
ideal result of no statistically significant performance
overhead. In the best possible case, the error boxes
will all intersect the ideal line. Boxes entirely above
the line indicate statistically significant overhead. As

can be seen, the secure environment imposes no sig-

4Similar results were obtained when measuring frame rate
per second for mpeg_play.

Figure 1: Performance data for ghostscript and
mpeg _play

3071

257

201

151

Traced ghostscript times (sec)

0 5 10 15 20 25 30
Untraced ghostscript times (sec)

127

'_\
[ee) o
T T

Traced mpeg_play times (sec)
(e2)

0 2 4 6 8 10 12

0 ‘ ‘ ‘ ‘

Untraced mpeg_play times (sec)

nificant performance penalty.

The negligible performance impact can be attributed
to the unintrusive nature of our implementation. Of
course, all computations and memory references that
do not involve the OS will execute at full speed, so
system calls can be the only source of performance
overhead. We first note that system calls are already
so time-consuming that the additional overhead of
the Janus process filtering is insignificant. Further-
more, most of the heavily used system calls (such
as read and write) require no access checks and

therefore run at full speed. By staying out of the ap-
plication’s way and optimizing for the common case,
we have allowed typical applications to run with neg-
ligible performance overhead.

6 Related work

Due to the accelerated development of communica-
tion technology, the security and protection problems
inherent in an open and free communication envir-
onment, such as the Internet, are relatively new ones
to solve. Consequently, much of the work addressing
security for this environment is still being developed.

To achieve security, we use the concept of sandbox-
ing, first introduced by Wahbe et al. in the con-
text of software fault isolation [35]. However, they
were actually solving a different problem. What they
achieved was safety for trusted modules running in
the same address space as untrusted modules. They
ignored the problem of system-level security; con-
versely, we do not attempt to provide safety. They
also use binary-rewriting technology to accomplish
their goals, which prevents them from running ar-
bitrarily general pre-existing applications.

Java [25] is an comprehensive system that addresses,
among other things, both safety and security, al-
though it achieves security by a different approach
from ours. Java cannot secure pre-existing pro-
grams, because it requires use of a new language.
We do not have this problem; our design will run
any application, and so is more versatile in this re-
spect. However, Java offers many other advantages
that we do not address; for instance, Java provides
architecture-independence, while Janus only applies
to native code and provides no help with portability.

OmniWare [20] takes advantage of software fault
isolation techniques and compiler support to safely
execute untrusted code. Like Java, it also has
architecture-independence, extensibility, and effi-
ciency as important goals.

We note two important differences between the Java
approach and the Janus philosophy. The Java pro-
tection mechanism i1s much more complex, and is
closely intertwined with the rest of Java’s other func-
tionality. In contrast, we have more limited goals,
explicitly aim for extreme simplicity, and keep the se-
curity mechanism orthogonal from the non-security-
critical functionality.

securelib is a shared library that replaces the C
accept, recvfrom, and recvmsg library calls by a

version that performs address-based authentication;
it is intended to protect security-critical Unix system
daemons [30]. Other research that also takes advan-
tage of shared libraries can be found in [27, 24]. We
note that simple replacement of dangerous C library
calls with a safe wrapper is insufficient in our exten-
ded context of untrusted and possibly hostile applic-
ations; a hostile application could bypass this access
control by simply issuing the dangerous system call
directly without invoking any library calls.

Fernandez and Allen [23] extend the filesystem pro-
tection mechanism with per-user access control lists.
Lai and Gray [28] describe an approach which pro-
tects against Trojan horses and viruses by limit-
ing filesystem access: their OS extension confines
user processes to the minimal filesystem privileges
needed, relying on hints from the command line and
(when necessary) run-time user input. TRON [7] dis-
courages Trojan horses by adding per-process capab-
ilities support to the filesystem discretionary access
controls. These works all suffer two major disadvant-
ages: they require kernel modifications, and they do
not address issues such as control over process and
network resources.

Domain and Type Enforcement (DTE) is a way to
extend the OS protection mechanisms to let sys-
tem administrators specify fine-grained mandatory
access controls over the interaction between security-
relevant subjects and objects. A research group
at TIS has amassed considerable experience with
DTE and its practical application to Unix systems
[5, 6, 32, 33]. DTE is an attractive and broadly ap-
plicable approach to mandatory access control, but
its main disadvantage is that 1t requires kernel modi-
fications; we aimed instead for user-level protection.

7 Limitations and future work

7.1 Limitations of the prototype

One inherent limitation of the Janus implementation
is that we can only successfully run helper applica-
tions which do not legitimately need many privileges.
Our approach will easily accommodate any program
that only requires simple privileges, such as access to
a preferences file. Application developers may want
to keep this in mind and not assume, for example,
that their applications will be able to access the whole
filesystem.

We have followed one simple direction in our proto-
type implementation, but others are possible as well.

One could consider using specialized Unix system
calls to revoke certain privileges. The two major
contenders are chroot (), to confine the application
within a safe directory structure, and setuid(), to
change to a limited-privilege account such as nobody.
Unfortunately, programs need superuser privileges
to use these features; since we were committed to
a user-level implementation, we decided to ignore
them. However, this design choice could be recon-
sidered. Other security policies (such as mandatory
audit logs) may also be more appropriate in some
environments.

The most fundamental limitation of our implement-
ation, however, stems from its specialization for a
single operating system. Each OS to which Janus
might be ported requires a separate security ana-
lysis of its system calls. Also, a basic assumption of
Janus is that the operating system provides multiple
address spaces, allows trapping of system calls, and
makes it feasible to interpose proxies where neces-
sary. Solaris 2.4 has the most convenient support
for these mechanisms; we believe our approach may
also apply to some other Unix systems. On the other
hand, platforms that do not support these services
cannot directly benefit from our techniques. In par-
ticular, our approach cannot be applied to PCs run-
ning MS-DOS or Microsoft Windows. The utility of
these confinement techniques, then, will be determ-
ined by the underlying operating system’s support
for user-level security primitives.

7.2 Future work

In this paper, we have limited discussion to the topic
of protecting untrusted helper applications. It would
also be interesting to explore how these techniques
might be extended to a more ambitious scope.

One exciting area for further research involves Java
applet security. Java [25] is seeing widespread de-
ployment, but several implementation bugs [22] have
started to shake confidence in its security model. For
more protection, one could run Java applets within a
secure environment built from techniques described
in this paper. This approach provides defense in
depth: if the Java applet security mechanism is com-
promised, there is still a second line of defense. We
are experimenting with this approach; more work is
needed.

Another natural extension of this work is to run web
browsers under the Janus secure environment. The
recursive tracing of child processes would ensure that
running a browser under Janus would protect all

spawned helper applications as well. The arguments
which leave us suspicious of helper applications also
apply to web browsers: they are large, complex pro-
grams that interpret untrusted network data. For ex-
ample, a buffer overrun bug was found in an earlier
version of the Netscape browser [21]. The main chal-
lenge is that browsers legitimately require many more
privileges; for instance, most manage configuration
files, data caches, and network connections. Of these,
the broader network access seems to pose the most
difficulties.

We believe proxies are a promising approach for im-
proving control over network accesses. By taking ad-
vantage of earlier work in firewalls, we were able to
easily integrate a safe X proxy into our prototype.
We have shown that one can guard access to sys-
tem calls with a reference monitor constructed from
process-tracing facilities; we suspect that one can ef-
fectively and flexibly guard access to the outside net-
work with existing proxies developed by the firewall
community. One issue is how to interpose proxies
forcibly upon untrusted and uncooperative applic-
ations. We currently use environment variables as
hints—for instance, we change the DISPLAY variable
to point to a proxy X server, and disallow access to
any other X display—but this only works for well-
behaved applications that consult environment vari-
ables consistently. One might consider implementing
such hints with a shared library that replaces net-
work library calls with a safe call to a secure proxy.

So far we have followed the policy that a helper ap-
plication should not be able to communicate with the
outside network, since there are several subtle secur-
ity issues with address-based authentication, trust
perimeters, and covert channels [22]. Integration
with filtering proxies and fine-grained control over
access to other network services, such as domain
nameservers and remote web servers, would enable
our techniques to be used in broader contexts. The
overlap with research into firewalls lends hope that
these problems can be solved satisfactorily.

8 Conclusion

We designed and implemented a secure environment
for untrusted helper applications. We restrict an un-
trusted program’s access to the operating system by
using the process tracing facility available in Solaris
2.4. In this way, we have demonstrated the feasib-
ility of building and enforcing practical security for
untrusted helper applications.

The Janus approach has two main advantages:

e The Janus protection mechanism is orthogonal
from other application functionality, so our user-
mode implementation is simple and clean. This
makes it more likely to be secure, and allows
our approach to be broadly applicable to all ap-
plications.

e We can protect existing applications with little
performance penalty.

We feel that this effort is a valuable step toward se-
curity for the World Wide Web.

9 Availability

The Web page

http://www.cs.berkeley.edu/ "daw/janus/
will contain more information on availability of the
Janus software described in this paper.

10 Acknowledgements

We would like to thank Steven Bellovin, David Op-
penheimer, Armando Fox, Steve Gribble, and the an-
onymous reviewers for their helpful comments.

References

[1] [8lgm]-Advisory-16.UNTX.sendmail-6-Dec-
1994, December 1994.

[2] [8lgm]-Advisory-17.UNIX.sendmailV5-2-May-
1995, May 1995.

[3] [8lgm]-Advisory-17.UNIX .sendmailV5.22- Aug-
1995, August 1995.

[4] [8lgm]-Advisory-20.UNTX.sendmailV5.1-Aug-
1995, August 1995.

[5] Lee Badger, Daniel F. Sterne, David L. Sher-
man, and Kenneth M. Walker. A domain and
type enforcement UNIX prototype. USENIX
Computing Systems, 9(1):47-83, Winter 1996.

[6] Lee Badger, Daniel F. Sterne, David L. Sher-
man, Kenneth M. Walker, and Sheila A.
Haghighat. Practical domain and type enforce-
ment for UNIX. In Proc. 1995 IEEE Symposium
on Security and Privacy, 1995.

[7] Andrew Berman, Virgil Bourassa, and Erik Sel-
berg. TRON: Process-specific file protection for
the UNIX operating system. In Proc. 1995
USENIX Winter Technical Conference, pages
165-175. USENIX Assoc., 1995.

[8] CERT advisory CA-88:01, 1988.

[9] CERT advisory CA-90:01, January 1990.
[10] CERT advisory CA-93:15, October 1993.
[11] CERT advisory CA-93:16, November 1993.
[12] CERT advisory CA-94:12, July 1994.

[13] CERT advisory CA-95:05, February 1995.
[14] CERT advisory CA-95:08, August 1995.
[15] CERT advisory CA-95:10, August 1995.
[16] CERT advisory CA-95:11, September 1995.

[17] William R. Cheswick and Steven M. Bellovin.
Firewalls and Internet Security: Repelling the
Wily Hacker. Addison-Wesley, 1994.

[18] Frederick Cohen. Personal communication.

[19] Frederick Cohen. Internet holes. Network Se-
curity Magazine, January 1996.

[20] Colusa Software. OmniWare technical overview,

1995.

Septem-
Internet.

[21] Ray Cromwell. Buffer overflow,
ber 1995. Announced on the
http://www.c2.net/hacknetscape/.

[22] Drew Dean, Edward W. Felten, and Dan S.
Wallach. Java security: From HotJava to Nets-
cape and beyond. In Proc. of the 1996 IEEFE
Symposium on Security and Privacy, 1996.

[23] G. Fernandez and L. Allen. Extending the
Unix protection model with access control lists.
In Proc. Summer 1988 USENIX Conference,
pages 119-132. USENIX Assoc., 1988.

[24] Glenn S. Fowler, Yennun Huang, David G.
Korn, and Herman Rao. A user-level replicated
file system. In Summer 1993 USENIX Confer-
ence Proceedings, pages 279-290. USENIX As-
soc., 1993.

[25] James Gosling and Henry McGilton. The Java
language environment: A white paper, 1995.
http://wuw. javasoft.com/whitePaper/
javawhitepaper_1.html.

[26]

[27]

[33]

[36]

Brian L. Kahn. Safe use of X window system
protocol across a firewall. In Proc. of the 5th
USENIX UNIX Security Symposium, 1995.

David G. Korn and Eduardo Krell. The 3-D
file system. In Summer 1989 USENIX Confer-
ence Proceedings, pages 147-156. USENIX As-
soc., 1989.

Nick Lai and Terence Gray. Strengthening dis-
cretionary access controls to inhibit Trojan
horses and computer viruses. In Proc. Sum-
mer 1988 USENIX Conference, pages 275-286.
USENIX Assoc., 1988.

Butler Lampson. Hints for computer system
design. In Proceedings of the 9th ACM Sym-
postum on Operating Systems Review, volume

17:5, pages 33-48. Bretton Woods, 1983.

William LeFebvre. Restricting network access
to system daemons under SunOS. In UNIX
Security Symposium II1 Proceedings, pages 93—
103. USENIX Assoc., 1992.

Davor Matic. Xnest. Available in the X11R6
source. Also ftp://ftp.cs.umass.edu/pub/
rcf/exp/X11R6/xc/programs/Xserver/hw/
xnest.

David L. Sherman, Daniel F. Sterne, Lee
Badger, and S. Murphy. Controlling network
communication with domain and type enforce-
ment. Technical Report 523, TIS, March 1995.

Daniel F. Sterne, Terry V. Benzel, Lee Badger,
Kenneth M. Walker, Karen A. Oostendorp,
David L. Sherman, and Michael J. Petkac.
Browsing the web safely with domain and type
enforcement. In 1996 IEEE Symposium on Se-
curity and Privacy, 1996. Research abstract.

Jeff Uphoff. Re: Guidelines on cgi-bin scripts,
August 1995. Post to bugtraq mailing list.
http://www.eecs.nwu.edu/cgi-bin/mfs/
files2/jmyers/public html/bugtraq/
0166.html7?30#mfs.

Robert Wahbe, Steven Lucco, Thomas E. An-
derson, and Susan L. Graham. Efficient
software-based fault isolation. In Proc. of the
Symp. on Operating System Principles, 1993.

Christian Wettergren. Re: Mime question...,
March 1995. Post to bugtraq mailing list.
http://wuw.eecs.nwu.edu/cgi-bin/mfs/
files2/jmyers/public html/bugtraq/
1995a/0759.html1730#mfs.

Note:
from
ftp://info.cert.org/pub/cert advisories/.

8lgm advisories can be obtained from
http://wuw.8lgm.org/advisories/.

CERT advisories are available on the Internet

Figure 2: Sample configuration file

basic

putenv display

putenv HOME=. TMP=. PATH=/bin:/usr/bin:/usr/ucb:/usr/local/bin: /usr/local/X11/bin
:/usr/bin/X11: /usr/contrib/bin: /usr/local/bin XAUTHORITY=./.Xauthority LD_LIBRARY
_PATH=/usr/local/X11/1ib

tcpconnect allow display
path super-deny read,write,exec */.forward */.rhosts */.klogin */.ktrust

this is the paradigm to deny absolute paths and allow relative paths
(of course, we will later allow selected absolute paths)

assumes someone will put us in a safe sandboxed dir.

note that the wildcard “*° can match anything, including /

path allow read,write *

path deny read,write /*

allow certain explicit paths

path allow read /dev/zero /dev/null /etc/netconfig /etc/nsswitch.conf /etc/hosts
/etc/resolv.conf /etc/default/init /etc/TIMEZONE /etc/magic /etc/motd /etc/servic
es /etc/inet/services /etc/hosts /etc/inet/hosts

note: subtle issues here.

make sure tcpconnect is loaded, to restrict connects!
/dev/ticotsord is the loopback equivalent of /dev/tcp.
path allow read,write /dev/tcp /dev/ticotsord

where libraries live; includes app-defaults stuff too
path allow read /lib/* /usr/lib/* /usr/local/X11/1ib/* /usr/local/X11R6/1ib/* /us
r/share/lib/zoneinfo/* /usr/local/lib/* /usr/openwin/lib/*

these are here so you can read the files placed by Netscape and Mosaic
path allow read /var/tmp/* /tmp/*

this is where binaries live; it should look a lot like your PATH
path allow read,exec /bin/* /usr/bin/* /usr/ucb/* /usr/local/bin/* /usr/local/X11
/bin/* /usr/bin/X11/% /usr/contrib/bin/* /usr/local/bin/*

