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Abstract. We propose a new system modeled after Nymble. Like Nymble,
our scheme provides a privacy-preserving analog of IP address block-
ing for anonymizing networks. However, unlike Nymble, the user in our
scheme need not trust third parties to maintain their anonymity. We
achieve this while avoiding the use of trusted hardware and without re-
quiring an offline credential issuing authority to guarantee that users do
not obtain multiple credentials.

We use zero-knowledge proofs to reduce the capabilities of collud-
ing third parties, and introduce a new cryptographic technique that we
call verifier-efficient restricted blind signatures, or VERBS, to maintain
efficiency. Signature verification with our VERBS are 1–2 orders of mag-
nitude faster than existing restricted blind signatures.
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1 Introduction

Anonymity networks provide users with a means to communicate privately over
the Internet. The Tor network [13] is the largest deployed anonymity network;
it aims to defend users against traffic analysis attacks by encrypting users’
communications and routing them through a worldwide distributed network of
volunteer-run relays [29].

The ability to communicate without fear of network surveillance makes it
possible for many users to express ideas or share knowledge that they might
otherwise not be willing to reveal for fear of persecution, punishment or simply
embarrassment. On the other hand, some users use the veil of anonymity as a
license to perform mischievous deeds such as trolling forums or cyber-vandalism.
For this reason, some popular websites (for example, Wikipedia [33] and Slash-
dot [14]) proactively ban any user connecting from a known anonymous commu-
nications network from contributing content, thus limiting freedom of expres-
sion.1

? An extended version of this paper is available [18].
1 Some IRC networks also block access to anonymous users (for example, see
https://wiki.torproject.org/noreply/TheOnionRouter/BlockingIrc).



Therefore, a real need exists for systems that allow anonymous users to con-
tribute content online, while preserving the ability of service providers to se-
lectively (and subjectively) ban individual users without compromising their
anonymity. Not only would such a system benefit the estimated hundreds of
thousands of existing Tor users, but it might also be a boon to wider acceptance
of Tor. Indeed, the need for an anonymous blacklisting mechanism has been ac-
knowledged by several key people involved with The Tor Project [11, 12]. Thus,
it is reasonable to expect that the operators of Tor might be willing to provide
the infrastructure necessary to realize such a system, a situation that would
greatly reduce the burden on service providers and lead to greater adoption.

Several schemes (e.g., [19, 20, 30–32]) have been proposed with the goal of
allowing anonymous blacklisting of Tor users. The most well-known of these is
Nymble [20, 32], which is the system after which we model our own.

1.1 An Overview of Nymble

Suppose a user Alice wishes to connect anonymously to a Service Provider (SP),
such as a website, while the SP will allow connections only if it can ban a misbe-
having user by IP address. To facilitate this, the Nymble system introduces two
TTPs, the Pseudonym Manager (PM) and the Nymble Manager (NM). Before
connecting to the SP, Alice connects directly to the PM, thus proving she has
control over the specified IP address. The PM then issues Alice a pseudonym
called a Nym, which is deterministically generated from her IP in such a way
that the NM is able to verify that the pseudonym was in fact issued to Alice
by the PM, but learns no information about Alice’s IP. Alice then connects to
the NM over an anonymous channel and presents her Nym along with the name
of the SP to which she wishes to connect. Using the pair (Nym,SP ), the NM
computes and issues to Alice a set of nymbles — one for each time period left
in the current linkability window. Within a linkability window, each successive
nymble is generated from the previous one using a one way function (a hash
function) and two secrets; one secret is known only to the NM, while the other is
shared by the NM and the SP. In order to connect to the SP, Alice presents the
nymble which corresponds to the current time period. The shared secret allows
the SP to verify the validity of Alice’s nymble but not learn her IP address,
nor compute or identify any of her other nymbles. Therefore, Alice’s connections
within a time period are linkable, while her accesses across different time periods
are not. The SP records the nymble used during a session; if it is later found
that Alice misbehaved, the SP can complain to the NM by presenting it with a
copy of the recorded nymble. The NM then issues the SP a linking token, which
is essentially a trapdoor that allows the SP to compute all of Alice’s subsequent
nymbles starting from the time period in which the complaint was made (up
until the end of the linkability window). The one-way nature of hash functions
guarantees that the trapdoor provides no way for the SP to compute previous
nymbles; thus, backwards anonymity is preserved, while further connections from
a misbehaving user can be detected and blocked.



1.2 The Not-So-Nymble Side of Nymble

Nymble provides an efficient framework for banning users of an anonymizing
network; however, the simplicity and efficiency come at a cost. Recall that the
PM knows the pair (IP,Nym) while the NM knows the pair (Nym,SP ). There-
fore, if the NM and PM collude, it is trivial for them to determine which SP the
user associated with a given IP address is accessing. Further, because it is trivial
for an NM to retroactively compute a user’s nymbles, a colluding NM and SP
can easily break backwards anonymity and link a user’s connections. If all three
parties collude (i.e., the PM, NM, and SP), they can trivially link all actions of
a given user back to that user’s IP, thus completely breaking anonymity.

1.3 Our Contributions

We present a new Nymble-like system, unimaginatively called Nymbler, that
minimizes the capabilities of the PM, NM, and SP when colluding. This is ac-
complished through the use of anonymous credentials and a new verifier-efficient
restricted blind signature scheme that we use to permit users to construct their
own nymbles. Thus, our scheme eliminates the need to trust third parties with
anonymity while maintaining the essential properties of Nymble.

Outline The remainder of this paper is outlined as follows: Previous work re-
lated to restricted blind signature schemes and blacklisting anonymous users are
presented in §2, followed by an overview of the approach taken in this work in
§3. We describe in detail our approach to verifier-efficient restricted blind signa-
tures in §4 while our Nymbler scheme and the protocols involved are described
in §5. In §6 we suggest appropriate values for security parameters and analyze
the performance of our system with these choices. We conclude in §7 and outline
some potential areas for future work.

2 Related Work

2.1 Restricted Blind Signature Schemes

In his seminal work [9], Chaum introduced the notion of a blind signature scheme;
the idea was later elaborated in [10], where the first construction (based on RSA
signatures) was given. Chaum’s scheme allows a user to obtain a cryptographic
signature on a message without revealing any information about the message
to the signer. Later, Brands [5] proposed restricted blind signatures in which a
user obtains a blind signature on a message, while the signer gets to see certain
parts of the structure of the message before signing. If this structure does not
conform to certain rules, the signer can refuse to provide a signature; thus,
the choice of message to be signed can be restricted by the signer. However,
unlike Chaum’s blind signature scheme, where verification costs just one modular
exponentiation (where the exponent can be chosen to be as small as 3), verifying



Brands’ restricted blind signatures has a computational cost dominated by a
multi-exponentiation where each exponent is essentially random (modulo a large
prime) and depends on the message to be signed.

Camenisch and Lysyanskaya [7] presented a versatile signature scheme (CL-
signatures) that allows a re-randomizable restricted blind signature to be issued.
The well-known CL-credential [3, 7] scheme is based on CL-signatures. In their
scheme, the cost of verifying a signature is effectively one exponentiation and
one multi-exponentiation, with each exponent approximately equal in size to the
message to be signed.

Recently, Groth and Sahai [17] presented a zero-knowledge proof system
based on bilinear pairings. Belenkiy et al. [2] proposed a restricted blind signa-
ture scheme called P-signatures and noninteractive anonymous credential system
based on the Groth-Sahai framework. The cost of verification in their scheme is
about one elliptic curve exponentiation and three pairing operations.

Our approach uses RSA-based signatures similar to Chaum’s, combined with
zero-knowledge proofs that allow the user to prove certain properties about the
message before it is signed. The key advantage of our approach over other re-
stricted blind signature schemes is its extremely low cost verification algorithm
(i.e., almost as efficient as Chaum’s non-restricted blind signatures with expo-
nent 3). In particular, verifying a signature in our scheme costs just four modular
multiplications, which is 1–2 orders of magnitude faster than any previously pro-
posed restricted blind signature scheme.2

2.2 Systems for Anonymous Blacklisting

Unlinkable Serial Transactions [28] was one of the first systems to allow anony-
mous blacklisting. The scheme prevents an SP from tracking the behaviour of
its users, while protecting it from abuse due to simultaneous active sessions by a
single user. Users are issued blind tokens from the SP and, in normal operation,
these tokens are renewed at the end of a user’s transaction. If a user is judged to
have misbehaved, the SP can block future connections from that user by refusing
to issue further tokens. However, the scheme provides no way for the SP to ban a
user if misbehaviour is detected after the end of the session in which it occurred.

The Nym system [19] was a first attempt at solving the problem of allowing
anonymous edits on Wikipedia; it represents one of the first attempts at bringing
accountability to users of anonymity networks. Unlike later approaches, Nym
only provides pseudonymity, and thus is not an ideal solution. Later schemes —
most notably Nymble — improve upon Nym to provide full anonymity.

Blacklistable Anonymous Credentials (BLAC) [30], proposed by several of
the authors of Nymble, provides an anonymous credential system that does not
make use of any TTP who can revoke the anonymity of all users. Instead, the

2 In §6.2, we present experimental results indicating that the cost of verifying a sig-
nature in our scheme is almost forty times faster than computing a single modular
exponentiation — an operation that is less expensive than the verification of any of
the restricted blind signatures discussed above.



system allows an SP to add a credential to its blacklist if the owner of that
credential is judged to have misbehaved. However, BLAC suffers from two major
drawbacks. The first of these is the loss of efficiency when compared to a system
like Nymble; if the blacklist grows large, say one thousand users, then several
hundred kilobytes of communication and several seconds of computation are
required (per access) to prove that a user is not on the blacklist [32]. For large
services with many users, such as Wikipedia, the performance of this approach
is unacceptable. The second downside is that the credentials are not tied to
an IP address. Instead, the system assumes that some offline credential issuing
authority will ensure that no user obtains more than a single credential.

Privacy-Enhanced Revocation with Efficient Authentication (PEREA) [31] is
another system proposed by the same authors as BLAC. It improves upon BLAC
by providing similar functionality but utilizing a cryptographic accumulator to
offer computational requirements at the SP that do not depend on the size of
the blacklist. To make this possible the system makes use of an authentication
window, which is similar in concept to that of a linkability window, except that it
specifies the maximum number of subsequent connections a user may make before
it becomes impossible to block them due to behaviour during a previous session,
instead of the maximum time duration that can elapse. However, although the
cost of verification at the SP is constant regardless of the size of the blacklist, it is
still several orders of magnitude slower than Nymble, taking about 0.16 seconds
per authentication when the authentication window is 30 [31]. Moreover, as with
BLAC, the credentials used in PEREA are not tied to an IP address and are
issued by an offline credential authority that ensures no user can obtain more
than one credential. In the next section we touch on the technical reasons why
BLAC and PEREA cannot be adapted to use IP addresses as a unique resource.

3 Our Approach

This section provides a high-level overview of our scheme. Further details about
how this approach is realized are presented in §4 and §5.

As a first step, we replace the pseudonymous Nym with an anonymous cre-
dential; thus, the PM is replaced by a Credential Manager (CM). The CM learns
Alice’s IP address and issues a credential stating this fact, but the CM is unable
to recognize this credential at a later time. This modification prevents the CM
and NM from colluding to learn which SP a particular user is accessing.

We emphasize that our use of anonymous credentials — and the role of
the CM in general — is fundamentally different from in BLAC and PEREA.
For example, the CM is not required to keep track of the unique resources for
which a credential has been issued; instead, the CM encodes each user’s unique
resource directly in the credential that it issues. This prevents the enrolment
issues addressed in [30], wherein a user’s credential is misplaced or compromised,
from causing problems in our approach. In such a case, the CM simply issues the
user with a new credential encoding the same unique resource, and all of their
previous bans remain in effect. It is this property that allows us to continue to



use IP addresses as the unique resource (as in Nymble). Note that in BLAC
and PEREA this choice of unique resource is unrealistic, since in those schemes
an SP would have no way to distinguish two credentials encoding the same IP
address from ones encoding different IP addresses.

Using her credential, our scheme allows Alice to construct her own set of
nymbles in such a way that the NM is convinced of their validity without ever
actually seeing them. The NM then issues Alice with verifier-efficient restricted
blind signatures (VERBS) on her nymbles so that the SP can also be convinced
of their validity. Note that from a security point of view there is no reason why
the NM, and not the SP, must be responsible for verifying the integrity of Alice’s
nymbles; indeed, the SP could verify Alice’s proofs directly and thus eliminate
the role of the NM at this stage. Our motivation for using the NM at this stage
in the protocol is simply to offload work from the SP to the NM.

In the case that Alice misbehaves and the SP wishes to ban her, the SP
can present a nymble to the NM, who then performs a non-trivial amount of
computation — i.e., solving a discrete log — to recover sufficient information to
calculate Alice’s remaining nymbles. This is accomplished through the use of a
trapdoor discrete log group, where parameters are selected so that performing
discrete logs is possible using the NM’s private key but even so is sufficiently
expensive that wholesale deanonymization is impractical. We emphasize that
although the NM can compute subsequent nymbles from a starting point, even
with the ability to solve discrete logs the NM cannot go backwards. Thus, break-
ing backwards anonymity in our system is much more difficult than in Nymble.

4 Verifier-Efficient Restricted Blind Signatures

In this section we introduce verifier-efficient restricted blind signatures (VERBS),
a restricted blind signature scheme with an efficient verification protocol. Our
scheme makes use of commitments, which can be Feldman commitments [15]
(the commitment to x is CF(x) = sx for a known group element s) or Peder-
sen commitments [24] (the commitment to x is CP(x) = sxrγ for known group
elements s, r where logs r is unknown, and γ is random).

We use several standard zero-knowledge proofs from the literature; in par-
ticular, we use the standard proof of knowledge of a committed value (i.e., a
discrete logarithm) [27], proof that a commitment opens to a product of com-
mitted values [8], and proof of knowledge of a committed value that lies in a
particular range [4]. We note that no proof is necessary for addition or scalar
multiplication of committed values, as those operations are easily accomplished
by multiplication or exponentiation of the commitments, respectively.

We also utilize a proof of nested commitments (a “nest proof”); that is, given
A,B, prove that you know x such that A is a commitment to a commitment to
x and B is a commitment to the same x. That is (for simplicity, we only show
the Feldman case; the Pedersen case is similar), that you know x and G such
that G = gx, A = sG, and B = tx. (All operations are in appropriate groups,
and g, s, t are generators of those groups.)



This proof works the same way as the ordinary proof of equality of discrete
logarithms: the prover chooses v and outputs gv and tv; the verifier (or a hash
function if the Fiat-Shamir [16] method is used) chooses a challenge c; the prover
outputs r = v − cx; the verifier accepts if Gcgr = gv and Bctr = tv. The twist
in our scenario is that G is not available to the verifier; only its commitment
(A = sG) is. We solve this problem by having the prover output sg

v

instead of
gv, and having the prover compute sG

c

(the commitment to Gc) and prove in
zero-knowledge that it was done correctly (see below). Then the verifier checks
that (sG

c

)g
r

= sg
v

(along with the unchanged Bctr = tv). In the event that g
and t have different orders (which will be true in general, and in our case), the
above range proof is also utilized to show that 0 ≤ x < ord(t).

For the proof of an exponentiation of a committed value, we use a simplified
version of the algorithm from [8]. In that paper, the exponent was also hidden
from the verifier. In our situation, the exponent c is known, which makes matters
considerably easier. The prover just performs any addition-and-multiplication-
based exponentiation routine, and proves that each step was done correctly.

We next describe the four algorithms that make up VERBS. The full details
are presented in [18]. We will state the algorithms in their noninteractive zero-
knowledge form (such as by using Fiat-Shamir [16]); the adaptation of VERBS-
Blind and VERBS-Sign to interactive zero-knowledge is straightforward. (The
other two algorithms do not change.)

All computations are performed modulo an RSA number, ρ, whose factor-
ization is known only to the signer. The VERBS-Blind algorithm is executed
by the client. The algorithm takes as input a group element g, a commitment
C(x) (either Feldman or Pedersen) to a secret value x, and x itself (plus γ in
the case of a Pedersen commitment). The role of this algorithm, much like its
Chaumian counterpart, is to produce the blinded message S = f(ν) · α3 mod ρ,
where ν = gx and the random blinding factor α are hidden from the signer, and
f(z) = z2 + 1 is a one-way function. (It is one-way since the factorization of the
modulus ρ is unknown to the client.) It also produces Π, a zero-knowledge proof
that the computation of S was performed correctly.

The VERBS-Sign protocol is run by the NM. It takes the tuple (S, p, q, ξ,Π)
as input. S ∈ Z∗ρ is a blinding of the message to be signed. p and q are the
factors of ρ. ξ ∈ Z∗ρ is a context element that encodes meta-information about
the signature (see §5.1). Π is a zero-knowledge proof that S was correctly formed.
It outputs the blinded signature σ′ = (ξ · S)

1
3 mod ρ if all proofs in Π are valid;

otherwise, it outputs ⊥. Note that σ′ is essentially just a Chaum blind signature.
The VERBS-Unblind protocol is run by the client. The algorithm takes the

tuple (σ′, α) as input. σ′ is a blind signature and α is the blinding factor used
to blind the signature. It outputs σ = σ′ · α−1 mod ρ, the unblinded signature.

The VERBS-Verify algorithm is run by the SP. It takes the tuple (ν, σ, ξ) as
input; ν is the message that was signed, σ is the (unblinded) signature, and ξ is
the context element. It outputs true iff σ3 mod ρ ?= ξ · (ν2 + 1) mod ρ. Note
that the cost of VERBS-Verify is just four modular multiplications.



5 An Improved Nymble

We next present our new anonymous blacklisting scheme modeled after Nymble.
Our scheme aims to meet the same goals as Nymble, while making deanonymiza-
tion of a user infeasible, regardless of which subset of third parties might collude
against her. Before describing the approach in any detail, we briefly describe the
third parties involved and explain their roles. Note that the SP must trust third
parties to properly carry out their respective responsibilities; however, unlike in
the original Nymble, the user need not trust them not to collude in order for her
anonymity to be maintained.

The third parties are called the Credential Manager (CM) and the Nymble
Manager (NM). The CM is responsible for issuing an anonymous credential to
the user which encodes two pieces of information: an obfuscated version of the
user’s IP address, and an expiration time. For added security, the CM may
be distributed as outlined below. At any time before this expiration, the user
can present her credential to the NM to receive a set of mutually unlinkable
authentication tokens called nymbles, which can be used to anonymously access
the services offered by a Service Provider (SP). The NM never sees the nymbles
that it issues, but it does supply the user with a verifier-efficient restricted blind
signature on each of them, which allows the user to efficiently convince the SP of
their legitimacy. When the user connects to the SP over an anonymous channel
she must present a valid nymble. The SP records the nymble that was used during
each session. In the event of user misbehaviour, it presents a nymble to the NM,
who then computes all subsequent nymbles for that user (and hence prevents
her from connecting to the SP for the remainder of the linkability window).

5.1 System Parameters

In this subsection we introduce the system parameters used in our protocols. In
§6.1 we discuss technical considerations in the selection of these parameters and
suggest some reasonable values.

The system has a publicly known modulus n, where n is the product of two
unknown (to anyone) large safe primes, and N = 2n+1 is prime. Such a modulus
can be generated using a distributed protocol as described in [1], or with one-
time trust in an entity which generates it, such as used in the erstwhile RSA
Factoring Challenge [26]. Under the assumption that n is hard to factor, squaring
modulo n is a one-way function. Thus, squaring modulo n is a one-way function
that admits efficient zero-knowledge proofs of knowledge of preimages [8]. We
fix a, b ∈ QRN , the set of quadratic residues modulo N , so that loga b mod N is
unknown. Choosing (a, b) = (4, 9) is fine.

Since IP addresses tend to change frequently, the system-wide parameter ∆t

specifies the maximum time period for which an issued credential is valid. That
is, after a time period of ∆t has elapsed, the user must reauthenticate with the
CM to obtain a fresh credential encoding her current IP address, herein denoted
IP.



As in the original Nymble, our scheme uses the concept of linkability windows.
This prevents a malicious NM and SP from computing a trapdoor for a user
that can be used to link that user’s actions indefinitely. The duration W of each
linkability window is a parameter that can vary from SP to SP based on their own
policies; reasonable values for this parameter might be, for example, twenty-four
hours or one week. Each linkability window is indexed by a value d, which is used
in the computation of nymbles during that time period. For example, d might
be equal to the current year concatenated with the current day of the year, or
the current year concatenated with the current week of the year (if twenty-four
hour or one-week linkability windows are used, respectively). The method used
to determine d for a given date and time should be public and easily computable
by any user. Each linkability window d is further subdivided into Γ uniform-
sized time periods, denoted τd,1, τd,2, . . . , τd,Γ . A reasonable duration for these
time periods might be fifteen minutes (in which case W = Γ ·15 minutes). Their
duration determines how often a user is able to unlinkably access the service,
as exactly one unique and unlinkable nymble is issued per IP address per time
period in each linkability window.

Each SP possesses a linking list L of the future nymbles associated with users
who have misbehaved; these nymbles will not be accepted. The SP also possesses
a blacklist B, which contains one canonical nymble for each user in the linking
list (i.e., that user’s nymble for the last time period of the linkability window),
and is signed by the NM and published by the SP. Before attempting to connect
to the SP a user will download a copy of this blacklist and confirm that she is not
presently banned. (This is important since otherwise, if a user does not realize
she is presently on the blacklist, the SP could link the user’s actions without her
knowledge.) When receiving a request for a connection from a Nymble user, the
SP consults the linking list to determine if the user is blacklisted. The techniques
of [32] can be used to ensure that the user receives an up-to-date blacklist.

In our description of the protocols we assume that the credentials are Camen-
isch-Lysyanskaya (CL) credentials [3, 7], although our approach could be easily
adapted to other credential systems. The CM’s public key is, therefore, the tuple
(S,Z,R1, R2,m), where m = mpmq is an `m-bit product of two large safe primes
of equal size, 〈S〉 = QRm (i.e., S is a randomly chosen generator of the group
QRm) and Z,R1, R2 ∈R QRm are randomly chosen quadratic residues modulo
m. Here `m is a security parameter; in [3] the authors recommend `m = 2048.
The CM’s private key is the tuple (mp,mq, sk), i.e., the factorization of m and
a secret Message Authentication Code (MAC) key. For a distributed CM, each
CM node would have an independent key pair.

The NM has public key ρ = pq, where ρ is an `ρ-bit product of `B-smooth
primes p and q (that is, p−1 and q−1 are products of `B-bit primes), such that
R = 4ρ + 1 is a prime.3 It is required that ρ > n, but being just barely larger
is sufficient. We note that a different ρ can be used in conjunction with each
SP and linkability window, but for brevity, we will use a single ρ value in our

3 We use 4ρ+ 1 because it is easy to see that p and q must be congruent to 2 mod 3,
and so 2ρ+ 1 must be divisible by 3.



descriptions. Here `B is chosen so that computing discrete logarithms modulo ρ
in subgroups of order ≈ 2`B is costly but feasible. In other words, given knowledge
of the factorization of p− 1 and q − 1, computing discrete logs modulo p and q
(and hence, modulo ρ) is feasible (but costly) using a technique like the parallel
rho method of van Oorschot and Wiener [23]. g is a generator of QRρ, and r
and s are generators of the order-ρ subgroup of Z∗R such that logr s is unknown.
The NM’s private key is then (p, q) and the factorization of φ(ρ) (into `B-bit
primes), so Z∗ρ is a trapdoor discrete logarithm group with the NM’s private key
as its trapdoor.

Each SP is tied to a value h, which changes once per linkability window.
Here h ∈ Z∗n and it is required that h has large order in Z∗n. More precisely,
we require that ord(h) ≥ (p−1)(q−1)

4 . This requirement is guaranteed to hold if
gcd(h, n) = gcd(h2 − 1, n) = 1, which can easily be confirmed by any user. In
practice, we also need to be sure that the relative discrete logarithm between
the h values of different SPs, or the same SP at different linkability windows, is
unknown. For this reason, we let h be the result of a strong cryptographic hash
function applied to a concatenation of d and the SP’s name (where d is the index
of the linkability window for which nymbles derived from h will be valid). In the
unlikely event that the result of the hash does not satisfy the order requirement,
the hash is applied iteratively until an appropriate value for h is produced.

Every pair (SP, τd,j) is associated with a context element denoted by ξSPd,j ∈
Z∗ρ. As the notation suggests, this context element encodes the SP, linkability
window, and time period for which a particular nymble is valid; without it, the
SP has no way to distinguish, for example, nymbles issued for a time period that
has already passed or those intended for a different SP altogether. The values
for ξSPd,j can be precomputed and must be known by both the NM and the SP,
as they are required in the VERBS-Sign and VERBS-Verify protocols. The client
must also know ξSPd,j in order to verify its own nymbles. A reasonable value for
ξSPd,j might be as simple as a hash of the SP’s name, d, and j.4

5.2 Credential Issuing Protocol

When a user Alice wishes to gain anonymous access to an SP, she must first
prove possession of IP to obtain a valid signed CL-credential from the CM. The
following protocol describes this process.
1. Alice connects directly to the CM; this proves to the CM that Alice is in

possession of IP.
2. The CM computes x = MACsk(IP) and texp = tcur +∆t, where MACsk(·)

denotes a Message Authentication Code keyed by the CM’s private key sk5,
tcur is the current time, and texp is the expiration time of the credential to
be issued. The tuple (x, texp) is transmitted to Alice.

4 The security requirement is that the cube root modulo ρ of the ratio of any two of
the ξ should be computable only with negligible probability if the factorization of ρ
is unknown.

5 A MAC of Alice’s IP address is used instead of her plaintext IP address to frustrate
brute-force attacks performed by a colluding NM and SP.



3. The CM then issues Alice a CL-credential Cred(x, texp) = (A, e, v) encoding
x and texp, where e ∈R [2`e−1, 2`e−1 + 2`

′
e−1] is a randomly chosen prime,

v ∈R Zφ(m), and A =
(

Z
R1

x·R2
texp ·Sv

)1/e

mod m. Recall that R1, R2 and S

and Z are part of the CM’s public key. Here `e and `′e are security parameters;
see §6.1 and [3] for more details.

5.3 Nymble Acquisition Protocol

Once a valid credential is obtained from the CM, the next step is for Alice to
compute a set of nymbles and receive VERBS on each of them from the NM.
These nymbles are computed using values associated with the SP to which she
wishes to gain access, the time period and linkability window in which they
will be valid, and Alice’s IP address. Alice may choose to request any number
of nymbles, provided that this number does not cause her nymble set to span
multiple linkability windows and does not exceed a predefined limit K imposed
by the particular SP. Let k be the number of nymbles which Alice requests,
and let j ≥ 1 be the index of the time period τd,j within the current linkability
window (d), for which the first nymble will be valid.
1. Alice rerandomizes Cred(x, texp) as follows [3]:

(a) she chooses v′ ∈R {0, 1}`m+`∅ , where `∅ is a security parameter;
(b) she computes A′ = A · Sv′ mod m and v′′ = v − ev′ (in Z).
Her rerandomized credential is then Cred′(x, texp) = (A′, e, v′′) .

2. Alice computes the public value h using the name of the SP and the index
d of the linkability window during which she wishes to connect. That is, she
computes h = hash(d||name), where name is the canonical name associated
with the SP. She also verifies that these values satisfy the order require-
ments from §5.1, and iteratively reapplies the hash function otherwise. She
transmits (h, name, k, j) to the NM.

3. The NM verifies that k ≤ K and j + k ≤ Γ , and aborts otherwise.
4. Alice verifiably computes her unique seed value hj = hx2

j

as follows:
(a) she picks a random γ ∈ Zn, computes the Pedersen commitment (to hj)

Yj = a

“
hx2

j
mod n

”
bγ mod N , and transmits Yj to the NM;

(b) next she performs the statistical zero-knowledge proof of knowledge

PK


(e, v′′, x, texp, γ) :

Z ≡ R1
x ·R2

texp · Sv′′ · (A′)e mod m
∧ tcur ≤ texp

∧ Yj ≡ a
“
hx2

j
mod n

”
bγ mod N

∧ x ∈ ±{0, 1}`MAC

∧ texp ∈ ±{0, 1}`t
∧ e− 2`e−1 ∈ ±{0, 1}`′e+`∅+`H+2


.

In the case of a distributed CM, this proof is repeated once for each CM
node, except that the third statement is replaced by a single nest proof
to the sum of the x values received from each CM. The first statement



in this proof of knowledge convinces the NM that Alice does indeed
possess a credential from the CM; the second statement asserts that this
credential is not yet expired; the third statement (a nest proof) proves
that Yj does indeed encode the secret x from the credential and the first
time period for which the credential should be valid; the remaining three
statements are just length checks to show that the credential is validly
formed. For full details on how this statistical zero-knowledge proof is
performed we refer the reader to §4 and to [3].

If the proof succeeds, the NM is convinced that Yj is a Pedersen commitment
to hj = hx2

j

mod n and encodes the same secret x as Alice’s credential;
otherwise, the NM terminates. Note that the NM has learned no nontrivial
information regarding the values of x and hj .

5. Alice computes her sequence of nymbles using hj as a seed value. This pro-
ceeds as follows:
(a) Alice computes the sequence (hj+i)

k−1
i=1 where hj+i =

(
hj+(i−1)

)2 mod

n = hj
2i mod n. Note that given any element of this sequence, it is easy

to compute the next element, but being able to compute the previous
element is equivalent to factoring n [22, Chap. 3]. She computes Pedersen
commitments Yj+i = ahj+ibγj+i mod N (γj+i ∈R Zn) to each hj+i and
transmits them, along with zero-knowledge proofs of multiplication to
show that they were computed correctly, to the NM.

(b) The NM verifies each of the proofs, and terminates if any proof fails.
6. Alice computes (but does not send) her nymbles νj+i = ghj+i mod ρ, for

0 ≤ i < k. (Here, the exponent is just taken as an integer in [1, n).) She
computes (αj+i, Sj+i, Πj+i) = VERBS-Blind(g, Yj+i, νj+i, γj+i), and sends
each blinded value Sj+i and proof Πj+i to the NM.

7. For 0 ≤ i < k, the NM computes (or looks up) its context element ξSPd,j+i,
and computes the blind signature σ′j+i = VERBS-Sign(Sj+i, p, q, ξSPd,j+i, Πj+i)
(Recall that p, q is part of the NM’s secret key, and ρ = pq.)

8. Alice unblinds the blind signatures σ′j+i by computing
σj+i = VERBS-Unblind(σ′j+i, αj+i) for 0 ≤ i < k.

9. If all steps are completed successfully, the tuple (νj+i, σj+i) is a valid nymble
for time period j+i for linkability window d and the given SP. Alice can verify
the validity of the nymble by checking VERBS-Verify(νj+i, σj+i, ξSPd,j+i) .

10. If j + k − 1 6= Γ (i.e., τd,j+k−1 is not the last time period in the current
linkability window), then Alice also computes νΓ . This is the value that the
NM will compute and place on the blacklist if Alice is, or becomes, banned
from the SP. Note that the NM need not see or verify this value, nor provide
a signature on it, since Alice will never be expected to present it to the SP.

5.4 Nymble Showing Protocol

The nymble showing protocol is extremely simple; Alice presents her nymble to
the SP, the SP confirms that it is valid, that the associated context element ξSPd,i
matches the current time period and linkability window, and that the nymble



does not appear on the linking list. If each of these conditions is met, Alice is
granted access.
1. Alice anonymously queries the NM for the current version number of the

blacklist, and computes the current linkability window and time period τd,i.
2. Alice then connects anonymously to the SP and requests a copy of the black-

list B. She confirms its legitimacy and that it is up-to-date by verifying
the version number and a signature from the NM encoded in the blacklist.
Once convinced of the freshness of the blacklist, she verifies that she is not
presently blacklisted. More specifically, she checks that νΓ 6∈ B. If she dis-
covers that she is on the blacklist, she disconnects immediately. In this case,
the SP learns only that “some blacklisted user” attempted to connect.

3. If she is not on the blacklist, Alice transmits the tuple (νi, σi) to the SP.
4. The SP consults the linking list L and confirms that Alice is not on the

blacklist by checking that νi 6∈ L. If this check fails, the SP terminates and
Alice is denied access.

5. The SP confirms that the given nymble is valid for the current time period
i and linkability window d by confirming that VERBS-Verify(νi, σi, ξSPd,i ) is
true. If so, Alice is granted access for the remainder of the time period;
otherwise, Alice is denied access.

6. The SP adds the tuple (νi, σi, i) to a log file, so that if it determines at
a later time (in the current linkability window) that Alice’s behaviour in
τd,i constitutes misbehaviour, it can present it to the NM to have Alice
blacklisted.

5.5 Blacklisting Protocol

Suppose that Alice misbehaves in time period i∗ and her misbehaviour is dis-
covered in time period i′ of the same linkability window. In this case, the SP
initiates the following protocol with the NM to have Alice added to the blacklist.

1. The SP transmits the tuple (SP, νi∗ , σi∗ , i∗, h,B,L) to the NM.
2. The NM verifies that h is valid for the SP and the current linkability window,

that B and L are up-to-date, and that VERBS-Verify(νi∗ , σi∗ , ξSPd,i∗) is true. If
so, the NM uses its private knowledge (the factorization of ρ = pq and the
factorization of φ(ρ) into `B-bit primes) to solve the discrete logarithm of
νi∗ = ghi∗ mod ρ with respect to g to recover the exponent hi∗ ; otherwise,
the NM terminates.

3. The NM then computes hi∗+1, . . . , hΓ using the recurrence equation hi+1 =
h2
i mod n and computes νi′ , . . . νΓ as νi = ghi mod ρ.

4. The NM computes the set L = {νi′ , νi′+1, . . . , νΓ } and then computes the
new linking list L′ = L ∪ L and the new blacklist B′ = B ∪ {νΓ }.

5. The NM increments the version number and signs the new blacklist and then
returns both the signed blacklist and the linking list to the SP.6

6 We adopt the same approach as the original Nymble system in order to ensure to
the user that the blacklist they view is up-to-date, however, we omit many of the



6 Implementation

We have implemented the key components of our system in order to measure
its performance. In the next subsection we discuss reasonable choices for various
system parameters, while in the following subsection we present performance
benchmarks carried out using these values.

6.1 Parameter Choices

First let us examine the relevant computations in more detail. In order to place a
user on the blacklist, the NM needs to compute a discrete log in a trapdoor group.
We intentionally make this non-trivial in order to deter bulk deanonymization
(in the sense that the users would become linkable, but not have their identities
revealed); our target is about one minute of computation (wall-clock time) per
discrete log computation. We also seek to ensure that, without the NM’s private
key, factoring and computing discrete logs mod ρ are infeasible; thus, we suggest
setting `ρ = 1536. The CM’s public key n should be as large as possible, while
ensuring that n < ρ, so we pick `n = 1534.

The discrete log computation takes about c · `ρ/`B · 2`B/2 modular multipli-
cations, which are almost completely parallelizable, for some constant of pro-
portionality c. If the NM has a parallelism factor of P (i.e., P is the number of
cores available to the NM), this will be about `ρ

`B
· c·2

`B/2

P ·M minutes to compute
a discrete log, where M is the number of modular multiplications that can be
computed by one core in one minute. So we want to choose `B such that

2`B/2

`B
≈ T ·M · P

`ρ · c
, (1)

where T is the desired wall-clock time (in minutes) to solve a discrete log. (In
§6.2, we measure c ≈ 0.57 and M to be about 23.1 million for `ρ = 1536.) Thus,
for T = 1 and P = 32 we get `B ≈ 50; for T = 1 and P = 64 we get `B ≈ 52.

On the other hand, it takes at least about 3
5 · 2

`B modular multiplications to
factor ρ, taking advantage of its special form by using Pollard’s p− 1 factoring
algorithm [25]. However, this algorithm is inherently sequential [6]; only a small
speedup can be obtained, even with a very large degree of parallelism.7 This
means it will take about 3

5 ·
2`B
M minutes to factor ρ. Assuming M = 23100000,

then `B = 50 yields over 55 years to factor ρ, and `B = 52 yields over 222 years
to factor ρ. (Remember again that this is wall-clock time, not CPU time.) Note
also that a different ρ can be used for each SP and for each linkability window,
thus reducing the value of expending even that much effort.

details here for brevity. In a later version of Nymble the authors propose the use
of “daisies” to ensure blacklist freshness. This approach could easily be used in our
scheme as well. The interested reader should consult [20, 32] for these details.

7 Of course, with arbitrarily large parallelism, other algorithms can factor ρ more
quickly without taking advantage of the special form of ρ; massively parallel trial
division is an extreme example.



The reason we seem to be making the unusual claim that 250 security is suf-
ficient is twofold: first, a minor point, these are counts of multiplications modulo
an `ρ-bit modulus, each of which takes about 212.8 cycles for our suggested
`ρ = 1536; thus, we are really proposing about 262 security here. More impor-
tantly, these are counts of sequential operations. When one typically speaks of
280 security (of a block cipher, for example), one assumes that the adversary can
take advantage of large degrees of parallelism, which is not the case here.

Moreover, as noted in [21, §4], since the complexity of factoring increases
with 2`B while the complexity of computing discrete logs increases with 2`B/2,
as cores get faster (M increases) and more numerous (P increases), the time
to factor ρ only goes up with respect to the time to compute discrete logs. In
particular, if M can be increased by a factor of f , then this leads to a net security
increase of a factor of f , whereas if P can be increased by a factor of g, this leads
to a net security increase of a factor of g2. These calculations suggest that the
Nymbler construction will get even more secure over time.

Suggested values for parameters related to CL-credentials are taken directly
from [3]. In particular, reasonable choices are `m = 2048, `∅ = 80, `e = 596,
`′e = 120, and `H = 256. We also suggest using `MAC = 256 and `t = 24.

6.2 Performance Evaluation

In this subsection we present measurements obtained with our C++ implemen-
tation of the protocol. These include the average times taken to: 1) compute a
nymble (and the associated proof of correct computation) at the client; 2) verify
the client’s proofs and issue a VERBS at the NM; 3) verify the signature on a
nymble at the SP; and, 4) solve an instance of the discrete log problem at the
NM. In order to compute M used in the previous subsection, and for comparison
with other restricted blind signature schemes, we also show the time required to
compute modular multiplications and exponentiations, respectively. Note that
the bulk of the computation in our scheme is in the Nymble Acquisition Protocol
— particularly in computing and verifying the zero-knowledge proofs.

We emphasize that our implementation is incomplete and unoptimized; it
is used simply to demonstrate that both the time-sensitive and cost-intensive

Table 1. Timings for essential computations in Nymbler.
Operation Host Mean Time Trials Reps/trial

Compute k nymbles Client 360 ms + 397k ms (R = .9974) 10 1
Issue k blind signatures NM 300 ms + 252k ms (R = .9803) 10 1

Verify signature SP 11.2 µs ± 0.3 µs 10 100,000
Solve DL instancea NM 25 m 38 s ± 2 m 16 s 10 1

Modular exponentiationb — 403 µs ± 6 µs 10 100,000
Modular multiplicationc — 2.59 µs ± 0.02 µs 10 100,000

a This is the time to solve discrete logs with the parallel rho method on a single core
and a 1536-bit 50-smooth modulus; using 32 cores should reduce this time to about
48 s ± 5 s. Solving for c in §6.1, Equation 1 with this value yields c ≈ 0.57.

b Computed using a 1536-bit base, 160-bit exponent and 1536-bit modulus.
c Computed using random 1536-bit multiplicands and 1536-bit modulus; this yields
M ≈ 23, 100, 000 ± 100, 000 modular multiplications per minute.



portions of our protocols can be carried out in an acceptable amount of time. In
particular, there is still significant room for optimizations in our implementation
of the VERBS-Blind algorithm and perhaps elsewhere in the protocols. For exam-
ple, in order for the user to prove correct exponentiation of a committed value,
our prototype implementation uses the naive “square-and-multiply” algorithm,
but more efficient algorithms can be plugged in very simply. Moreover, all of our
computations are single-threaded despite the highly parallelizable nature of the
protocols. Finally, we note that the as-of-yet unimplemented components of the
system are not expected to significantly alter these measurements.

The performance benchmarks in Table 1 were obtained on a 2.83GHz Intel
Core 2 Quad Q9550 running Ubuntu 9.10 64-bit.

These measurements compare favourably with BLAC and PEREA. In BLAC,
the time required for a user to construct a proof that she is not banned, and for
the SP to verify the proof, scales linearly with the size of the blacklist. In [30]
the authors give measurements which indicate that the cost is about 1.8 ms and
1.6 ms per entry on the blacklist, at the user and SP, respectively. Thus, when
the blacklist reaches a size of 385 entries8, the cost per authentication in BLAC
is roughly equal to the cost of obtaining a nymble in our scheme. (Half of the
cost in our scheme is constant overhead which can be amortized over the cost of
acquiring several nymbles.) We also note that, in this case, the cost at the SP is
about 142 times higher in BLAC. In PEREA (with an authentication window of
30), [31] reports that an authentication takes about 160 ms at the SP (regardless
of blacklist size) and up to 7 ms per entry on the blacklist for the user.

7 Conclusion and Future Work

We have presented a new system, inspired by Nymble, for providing an anony-
mous implementation of IP blocking over an anonymity network. Our approach
is based on anonymous credentials, verifier-efficient restricted blind signatures,
and a trapdoor discrete logarithm group. Compared to the original Nymble, our
scheme severely limits the ability of malicious third parties to collude in order to
break a user’s anonymity. Although our system is not as efficient as the original
Nymble, most of the added cost has been introduced in the Nymble Acquisition
Protocol; verifying a nymble’s authenticity at the SP is still very inexpensive.

One may pursue several directions to further improve our system.9 For ex-
ample, if the NM detects that a user has attempted to cheat in the Nymble
Acquisition Protocol, we would like to be able to temporarily ban this user
from any further use of Nymbler. One way that this could potentially be accom-
plished would be to use another Nymbler-like system (i.e., a meta-Nymbler) to
allow blacklisting of Nymbler users from the system; however, this approach is
8 An appendix in the extended version of this paper [18] gives recent usage and banning

statistics from Wikipedia, which indicate that the average size of the blacklist is
currently around 1200 entries — more than a factor of four larger than this figure.

9 The interested reader should consult the extended version of this paper [18] for a
more comprehensive list of future research directions.



actually overkill. Since this type of misbehaviour can always be detected during
a session, a simpler technique, such as Unlinkable Serial Transactions [28], would
be sufficient. We leave further investigation of this idea to future work.

Eventually, we envision that the CM services may be offered by the Tor
directory servers, or the Tor entry nodes themselves, as they are already trusted
with users’ IP addresses. If we use P-signatures [2] instead of CL-signatures in
the credentials obtained from the CM, each entry node can have its own public
key, certified by the directory server, and the NM will not be able to tell which
entry node certified the user’s IP address. There are nontrivial issues with this
simple proposal, however, and we leave addressing them to future work as well.
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