
Outsourced Private Information Retrieval∗

Yizhou Huang
Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada

y226huang@cs.uwaterloo.ca

Ian Goldberg
Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada

iang@cs.uwaterloo.ca

ABSTRACT
We propose a scheme for outsourcing Private Information
Retrieval (PIR) to untrusted servers while protecting the
privacy of the database owner as well as that of the database
clients. We observe that by layering PIR on top of an
Oblivious RAM (ORAM) data layout, we provide the abil-
ity for the database owner to perform private writes, while
database clients can perform private reads from the database
even while the owner is offline. Our system is compati-
ble with existing PIR access control and pricing schemes on
a per-record basis for these reads. This extends the usual
ORAM model by allowing multiple database readers with-
out requiring trusted hardware; indeed, almost all of the
computation in our scheme during reads is performed by un-
trusted cloud servers. We make a second observation that
the database owner can always conduct a private read as
an ordinary database client, and the private write protocol
does not have to provide a “read” functionality as a stan-
dard ORAM protocol does. Based on the two observations,
we construct an end-to-end system that privately updates a
1 MB record in a 1 TB database with an amortized end-to-
end response time as low as 300 ms when the database owner
has a fast network connection to the database servers, and
about 1 minute over a slow ADSL connection. Private read
times by the database readers are on the order of seconds in
either case.

Categories and Subject Descriptors
H.2.0 [General]: Security, integrity, and protection; H.2.4
[Database Management]: Systems—Distributed databases,
Query processing ; K.4.1 [Computers and Society]: Pub-
lic Policy Issues—Privacy ; K.4.4 [Computers and Soci-
ety]: Electronic Commerce—Security, Payment schemes

Keywords
Privacy Enhancing Technologies; Private Information Re-
trieval; Outsourcing Computation; Oblivious RAM

∗An extended version of this paper is available. [17]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WPES’13, November 4, 2013, Berlin, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2485-4/13/11 ...$15.00.
http://dx.doi.org/10.1145/2517840.2517854.

1. INTRODUCTION
Private Information Retrieval, or PIR, is a privacy en-

hancing technology (PET) that allows clients to query a
database in a privacy-preserving manner. The goal is that
the database server should be able to respond to client re-
quests without learning any nontrivial information about
which record the client is seeking. A trivial solution is to
download the entire database and issue queries locally. This
solution is clearly information-theoretically secure: no mat-
ter how much computation the server employs, it cannot
learn which record the client seeks; however, it is highly im-
practical to transmit large databases over the Internet. PIR
protocols aim to provide the same level of privacy, while
incurring a strictly sublinear communication cost.

Information-theoretic PIR (IT-PIR) schemes are“perfectly
secure” in the same sense as above—even a server employ-
ing unlimited computation cannot determine what the client
was after. On the contrary is computational PIR (CPIR),
whose security relies on certain cryptographic assumptions.
However, in order to achieve sublinear communication and
information-theoretic security at the same time, one must
employ multiple database servers [5], and rely on the as-
sumption that some number of these servers are not col-
luding. This non-collusion assumption is not unusual with
distributed PETs; other PETs such as Tor [8] and electronic
voting [4] make the same assumption.

In work from 2011, Olumofin and Goldberg [18] iden-
tified a CPIR scheme and a number of IT-PIR schemes
that process PIR queries faster than trivially downloading
the database. Their experimental results show that the
fastest scheme examined processes a PIR query on a 16 GB
database in less than 10 seconds, over 3 orders of magnitude
(1000 times) faster than downloading the database over a
10 Mb/s network.

1.1 Outsourcing PIR
Although the end-to-end PIR response time for databases

of a few gigabytes is somewhat reasonable, doing PIR over
a one-terabyte database using the same amount of compu-
tational power still requires over 10 minutes, which is be-
yond practicality. Even worse, as shown by experiments [18],
when the size of the database exceeds the size of the RAM
available, the performance begins to deteriorate as disk ac-
cess times dominate.

Luckily, the computation in most PIR schemes can be
easily parallelized. A recent experimental study by Devet [6]
has shown that with the help of 64 cores, Goldberg’s IT-PIR
protocol [10] is indeed about 64 times faster than in a single-

core setting. This promising result, measured on databases
of up to 256 GB, raises the possibility of reasonable private
query times to databases of even larger sizes, if the required
computational power is available.

Providing PIR services on large databases offers a strong
motivation to outsource them to a cloud, where the compu-
tational power of hundreds of cores can be utilized. However,
this outsourcing can come at a cost to privacy: although the
PIR ensures the privacy of the database clients, and encryp-
tion can ensure the database contents are protected from
the untrusted cloud, the database owner may also wish to
protect his updates to the database from being observed by
the cloud. Even the update patterns—which records get up-
dated when, or how often—may be sensitive information.
We will later formalize this notion as outsourcing privacy.
While outsourcing privacy protects the database owner, the
complementary notion of information retrieval privacy pro-
tects the database clients by hiding their access patterns.
We aim to construct a system that provides both of these
kinds of privacy.

The obvious way to provide outsourcing privacy is to let
the database owner re-encrypt the entire database and up-
load it for every single update; this is of course quite im-
practical, however, for reasonably large databases.

1.2 An overview of our scheme
There are three parties involved: one database owner, de-

noted by O; ` servers each holding a copy of the outsourced
database; and database clients who issue read queries for
records stored in the database. In reality, each of the `
“servers” might be a cloud service itself, such as Windows
Azure, Amazon AWS, etc. Note that in this case, ` servers
do not refer to ` computation units within one cloud, but
rather ` non-colluding clouds. We require ` servers because
our protocol uses multi-server IT-PIR schemes.

In a nutshell, O wishes to provide PIR services to database
clients, but she does not have enough computational re-
sources available to compute PIR queries quickly over large
databases (e.g. a 1 TB database). Thus, she decides to
store her database, which is an array of n records with equal
lengths,1 on ` servers (in some encrypted form); these servers
can perform the PIR computations while O is completely of-
fline. She can also update her records without revealing the
access pattern; thus, O is considered to be a “writer”.

Database clients wish to read records from the database.
PIR allows them to do so without revealing the read ac-
cess patterns to either O or the ` servers. These clients are
considered to be “readers”.

If anyone is allowed to read any record, then it is not very
interesting to construct a protocol that hides the write access
patterns, because anyone can easily find out which records
are updated and when by issuing read queries. However,
realistically, O might want clients to pay for records before
they are allowed to access them, or she might want to enforce
some access control policies over the records. In such cases,
our protocol guarantees neither the readers nor the database
servers learn the write access patterns of records they are not
entitled to access.

1More complex database layouts can be easily layered on top of this
simple primitive.

Our contributions
1. We propose a definition for outsourcing privacy that

reflects the privacy interests of a database owner against
both the untrusted servers housing the outsourced data,
as well as database clients who access that data.

2. We make a key observation that an ORAM scheme
and a PIR scheme can be fruitfully combined. We
combine this observation with a novel server-side in-
dexing structure to produce a system to allow a single
database owner to privately and efficiently write data
to, and multiple database clients to privately read data
from, an outsourced database. The system meets our
definition of outsourcing privacy, and pricing and ac-
cess control can be enforced on a per-record basis using
existing schemes.

3. We propose a concrete efficient construction, by allow-
ing the database owner to read records only through
PIR queries (not through the standard ORAM proto-
col). We implement a system based on this construc-
tion, showing the feasibility of outsourcing PIR com-
putations over a 1 TB database, even if the database
owner only has a slow network such as ADSL.

2. RELATED WORK
Oblivious RAM (ORAM), first proposed by Goldreich and

Ostrovsky [12], provides a solution for outsourcing storage
to an untrusted server. With a reasonable amount of private
storage on the client side, ORAM has been shown [15, 20,
23] to be much more efficient than when it was first pro-
posed [12]. ORAM allows a single user (who possesses a
secret key) to read and write data to a database housed on
an untrusted storage server, and completely hides the access
patterns of records from the server. The server cannot even
tell whether an access to the ORAM is a read or write op-
eration, nor can it tell how the current access is related to
previous ones.

However, ORAM does not allow access from multiple users
unless they share the same key: a user either has the key
and is able to access the whole ORAM obliviously, or she
does not have the key, and cannot access any record at all. It
is not obvious how to enforce any access control or pricing
to allow partial access to the database for entitled users.
Also, users who share the secret key see the access histories
of each other. In that sense, users who share the same key
should really be conceptually treated as one single user, and
what they are reading or writing is not oblivious to anyone
holding the secret key, including the database owner.

Any ORAM scheme naturally leads to a computational
PIR scheme with trusted hardware [21,22]. The private stor-
age required on the client side now sits on the trusted hard-
ware, which keeps the required ORAM secret key within
itself, and interacts with the untrusted server exactly the
same way as an ORAM client would do. A database client
simply tells the trusted hardware which record she wishes to
retrieve and waits for the response through a secure channel,
hoping that the trusted hardware does not leak her query to
others, and does not fool her with a wrong answer.

Another piece of work of particular relevance to ours is
Delegated Oblivious RAM proposed by Franz et al. [9]. Each
record in the Oblivious RAM is encrypted and signed by
a unique set of keys initially only known by the database

Multiple Multiple Avoids Hides Access

Readers Writers Trusted Hardware from DB Owner

ORAM [12] × × X ×
ORAM-aided PIR [21,22] X X × X

Delegated ORAM [9] X X X ×
This work X × X X

Table 1: This table shows how our protocol differs from related work. In all of the schemes, the access histories of clients are
hidden from the untrusted server.

owner. Giving out the decryption key to someone allows
her to read that record “obliviously”, and giving out both
the decryption key and the signing key allows both read and
write access to the record. However, the database owner is
able to learn the access patterns from all the other users
because she knows all the keys. Even worse, she is required
to do so; the database owner has to come back periodically to
look at the access history, reshuffling the ORAM according
to that history to allow further unlinkable ORAM accesses.

It is not surprising that none of these schemes keeps the
access histories of multiple clients private from the database
owner, because a general ORAM models only a single client
interacting with an untrusted storage. The notion of mul-
tiple clients was not introduced in ORAM’s original design,
which looks into hiding the access pattern of records from
the untrusted storage, not hiding the access history of users
from each other. Table 1 shows how our protocol is different
from those above.

3. BACKGROUND

3.1 Oblivious RAM
Oblivious RAM (ORAM) was first studied by Goldre-

ich and Ostrovsky [12]. In their model, a CPU with some
trusted storage of constant size wishes to conduct a compu-
tation in T virtual steps using n virtual items. Oblivious
RAM simulates the computation in an untrusted storage
such that for any two computations that require the same
number of virtual steps, the two actual access sequences of
actual items look indistinguishable to the untrusted storage.
They gave two constructions for ORAM, a Square Root So-
lution and a Hierarchy Solution, achieving for each ORAM
access amortized costs of Θ(

√
n · log2 n) and Θ(log3 T) re-

spectively [12].
Although the asymptotic costs look reasonable [12], an

unrealistically large constant is hidden behind the big Θ
notation because of the expensive oblivious sort required
to reshuffle the ORAM periodically, with the limited O(1)
trusted storage on the CPU. For this reason, ORAM has
long been considered an impractical protocol.

Recently, with the increasing popularity of cloud services,
ORAM has been proposed as a way to outsource data stor-
age to the cloud while hiding the access pattern of the under-
lying data. Encryption alone prevents the untrusted server
from learning the contents of the outsourced data. How-
ever, the access pattern might be enough for the adversary
to gain confidential information. For example, for a med-
ical database, the access frequency of a record might help
the adversary identify the disease the record is about, and
reveals possible medical conditions of patients who access
those identified records.

In the data outsourcing model, the constraint of O(1)
client-side storage does not apply any more, and the prac-

ticality of ORAM has been revisited. Larger client-side
storage allows more efficient oblivious sorts [13–15, 23] and
makes it possible to keep some index structure on the client
side [20]. In reality, a typical client might work with a local
private storage in the order of gigabytes, wishing to store
a database in the order of terabytes to the cloud. It has
been shown by previous works [15, 20, 23] that ORAM can
be practical in this data-outsourcing scenario.

3.2 Goldberg’s IT-PIR
Our construction builds on top of Goldberg’s multi-server

IT-PIR protocol [10]. We choose Goldberg’s IT-PIR for the
following two reasons: 1) it has an open-source implementa-
tion Percy++ [11]; 2) it is experimentally quite efficient [18].

Goldberg’s construction models the database as a r-by-s
matrix M over some finite field F. Let ej be a standard
basis vector in Fr with the jth entry being 1, so that ej ·M
yields exactly the jth row of M . In the simplest version of
the scheme, each of ` servers holds a copy of the matrix M .
In order to retrieve the ith record, the database client sends
a share of ei under Shamir secret sharing (with threshold
t) to each of the servers, who sees a vector v that looks in-
distinguishable from one chosen uniformly at random, and
computes v · M . Because of the linearity of Shamir’s se-
cret sharing, by interpolating the resulting vectors using La-
grange interpolation, the ith row can be reconstructed by the
PIR client. Unless more than t servers collude to share the
queries they received from the client, none of them learns
anything whatsoever about which record the client is after.
The communication cost is `(r+s) field elements, which op-
timally equals 2`

√
rs when the matrix is square; i.e. r = s.

This PIR scheme also supports robustness and Byzantine
robustness. [7] For the above privacy parameter t, as long
as at least t + 2 servers respond to the query correctly, the
other (misbehaving) servers will be identified, and the client
will still be able to reconstruct the correct response. This
allows us to withstand—and identify—servers that attempt
to disrupt the protocol.

3.3 Symmetric PIR and Oblivious Transfer
Symmetric PIR (SPIR) protects the privacy of the database

server by making sure that the database client learns only
one record per access request. (This rules out the trivial
download scheme, for example.) Oblivious Transfer (OT)
provides the same privacy guarantee, but does not have
SPIR’s constraint of sublinear communication cost, and so
is a strictly weaker notion. Coupled with anonymous cre-
dentials and zero-knowledge proofs, some of the SPIR and
OT schemes in the literature can support pricing and ac-
cess control over the records in the database, which is well-
suited for e-commerce applications, such as selling e-books
in a privacy-friendly way. We briefly introduce one flavor of
such constructions below.

In Camenisch et al.’s OT construction [2, 3], the entire
encrypted database is published. The encryption key for
the ith record is a unique signature on the message “i”. (A
unique signature scheme is one in which there is exactly one
valid signature for any given message and public key.) In
order to decrypt a record, an OT client requests a blind
signature on the desired index. Since the signature is blind,
the signer does not learn the message to be signed, which is
the index of the record. In order to enforce access control
(AOT [2]) or pricing (POT [3]), access control or pricing
information is encoded in the signature as well. The client
proves that the blinded message is well formed, and that her
credential satisfies the access control policy specified in that
blinded message. As observed by Aiello et al. [1], Camenisch
et al.’s OT construction can be easily turned into SPIR.

3.4 SPIR and OT with Data Privacy
Our protocol will contain a component where the un-

trusted cloud servers need to provide access to records from
a database Mkey of symmetric keys, using pricing or access
control to limit who gets to see which keys. This can be
easily accomplished with the SPIR or OT protocols above.
Importantly, however, the cloud servers themselves must not
be allowed to see the keys.2 We now provide one solution to
this problem.

Threshold signature.
In Camenisch et al.’s OT construction [2, 3], the encryp-

tion key of a record is a unique signature on its index. In a
nutshell, the client blinds a message Ei, which is a one-way
function of the record index i (as well as of pricing or access
control information, if needed), by raising it to a random
power k. The server signs the blinded message Ei

k using a
secret key h by computing σ = e(Ei

k, h) where e is a bilin-

ear pairing. The client then computes Ki = σ1/k = e(Ei, h)
which is then the decryption key.

We can prevent the servers from learning Ki by turning
this into a threshold signature scheme. Now, the database
owner generates ` secret shares c1, · · · , c` for the value c = 1
using Shamir secret sharing with threshold τ . Each server
gets a share hj = hcj and uses it to compute σj = e(Ei

k, hj).
The client then performs Lagrange interpolation in the ex-
ponent to recover σ = e(Ei

k, h) with τ + 1 valid responses.
Each Ei (i = 1, · · · , n) is stored identically on all ` servers

and is considered public information. Database clients can
retrieve any portion of the Ei’s using PIR queries and re-
cover Mkey entries Ki for records they are entitled to ac-
cess with the above threshold signature scheme. If there is
no coalition of servers exceeding some threshold τ , none of
the servers learns any nontrivial information about Mkey by
hosting Ei’s. In reality, cloud computing service providers
care about their reputation. It is not an unrealistic assump-
tion that they would honestly follow the protocol instead of
actively breaching from it by talking to parties they are not
supposed to talk to, although they might be curious to try
to learn something from the transcripts they are allowed to
see. It would be interesting to examine the non-collusion
assumption from the perspective of game theory, and pro-
vide more incentives for non-colluding behaviours. This is,
however, out of the scope of this paper.

2If a cloud server acts as a database client and purchases a key for
itself, then it of course will learn that key. Note that this scenario
does not violate our security notions, however.

Note that if more than t servers collude, they can learn
database clients’ queries, while if more than τ servers col-
lude, they can discover the database owner’s updates and the
contents of the database. Database clients must contact at
least max(τ, t)+1 servers to perform a private read (at least
τ + 1 to learn Ki through the threshold signature scheme,
and at least t+ 1 to fetch the encrypted record through the
PIR scheme). It is not required, but not unreasonable, to
set τ = t.

4. CONSTRUCTION
We now describe the construction of our scheme. We de-

note by private storage the storage local to the database
owner O, and the number of records by n. Each of these
records is associated with a unique id ranging from 1 to n.

4.1 Privacy Constraints
We care about privacy both for the database clients and

the database owner. We define information retrieval privacy
and outsourcing privacy for them respectively below.

Information retrieval privacy.
The definition of information retrieval privacy starts with

a database client retrieving a record with id i. Assuming
that the number of colluding servers in transaction with the
client does not exceed the privacy threshold t, none of the
servers learns anything about i through the transaction. The
database owner O also learns nothing about i.

Outsourcing privacy.
The database owner O updates the database over time.

Neither the database clients nor the untrusted servers learn
anything about the update pattern for records they are not
entitled to access.

There is no communication between different clients in
the protocol, so we do not model a privacy notion among
different clients. Our protocol does not afford a path for a
client to learn other clients’ secrets.

It is easy to see that information retrieval privacy is guar-
anteed by the properties of PIR and SPIR; our contribution
is in additionally achieving outsourcing privacy in an effi-
cient construction that supports multiple clients. We present
a formal definition for outsourcing privacy and a more thor-
ough security analysis for our construction in Appendices A
and B. Note that our protocol does reveal the overall fre-
quency of updates to the database, but not to individual
records.

4.2 Overview
Our system stores three matrices (databases) on the cloud

servers. First, Mrec stores the encrypted database records.
These records are arranged logically into an ORAM and then
laid out into a matrix by concatenating the elements of the
ORAM in some deterministic order (say, level-by-level), and
having each row of the matrix Mrec consist of some (integer)
number of the ORAM elements so as to make the shape of
Mrec as close to square as possible. Database clients will
use PIR to retrieve rows of Mrec. The second matrix, Mind,
stores the encrypted index that keeps track of the location
of each record within Mrec. Finally, Mkey stores a list of
uniformly random symmetric encryption keys {K1, . . . ,Kn},
one for each record in the database.

ERi

IVr i ri

EKi

IVk Ki MACi

Figure 1: The layout of a data item. The light grey parts are
encrypted.

Mrec and Mind are replicated across each of the ` clouds,
while Mkey is distributed using the data privacy technique
from Section 3.4 so that no coalition of τ or fewer cloud
providers can read the contents of Mkey.

The database owner maintains a master secret key KEY ,
which is used to access Mrec and Mind as described in detail
below.

A data item in Mrec contains three parts (as shown in Fig-
ure 1): the encrypted content ERi of the underlying record,
the encryption EKi of key Ki (both under a semantically
secure encryption scheme), and a MAC tag MACi. Here
ERi = IVr‖ENCKi,IVr (i‖ri), EKi = IVk‖ENCKEY,IVk (Ki),
ENCK,IV (·) is symmetric encryption with key K and IV
IV , and MACi = MACKi(i‖EKi‖ERi),3 where ri is the
content of the record with id i. EKi helps the database
owner recover Ki for reshuffling operations. For simplic-
ity, we call the record with id i the ith record or record
i. A dummy data item can simply be a random string
of the appropriate length. The elements of Mind can be
thought of as a list of authenticated semantically secure en-
cryptions, such as (IV,EIi,MACKi(IV ‖EIi)), where EIi =
ENCKi,IV (i‖OFFSETi) and OFFSETi indicates where
record i resides within Mrec.

Every time a record is updated in Mrec, the ORAM will
move records around, due to the rewrite of the updated
record or because of the reshuffling of some levels. There-
fore, Mind will also need to be updated. However, updating
a subset of the entries in Mind can leak information about
the access pattern. For now, consider our scheme to update
the entire Mind for each update operation on Mrec. For
records that do not change their offsets in Mrec, their en-
tries in Mind are simply re-encrypted using a new IV. We
will provide a more efficient construction for Mind in Sec-
tion 4.3.

Now, a complete retrieval action for the ith record in the
database requires three (S)PIR queries on the three matrices
mentioned above.

1. A PIR query on Mind for the offset OFFSETi of
record i in Mrec. No access control is required for
this PIR query, since the database client can decrypt
the offset only if she has already retrieved Ki. There
might be multiple data items corresponding to a record
in Mrec (depending on the underlying ORAM scheme),
and Mind keeps track of the one that reflects the most
recent update. With Ki, the database client is able to
verify the MAC and decrypt the offset for record i.

2. An SPIR query over Mkey to retrieve Ki. Pricing and
access control can be enforced using existing schemes
in the literature, such as Camenisch et al.’s ACOT or
POT [2, 3]. ACOT and POT are not SPIR schemes
per se, because they all require downloading the whole
encrypted database (albeit just the smaller database

3For good cryptographic hygiene, separate keys derived from Ki
should be used for the encryption and the MAC. We elide this de-
tail for ease of notation.

part1

part2

part3

LOC1 · · · · · · LOCq

· · ·

· · ·
...

· · ·
· · ·

partp−1

partp

Figure 2: The layout of Mind. Each row parti is organized as
a limited-sized queue with a size limit of q ≈ Q dn/pe, which
stores the indices for records with id ranging from (i − 1) ·
dn/pe+1 to i · dn/pe (as well as some dummy items). The light
grey part in part2 indicates the length of the current queue in
part2 (known only by O). When that queue grows to LOCq,
the entire part2 needs to be rewritten by O. Q is a parameter
that trades off write performance for read performance.

of keys Mkey and not the entire database Mrec). How-
ever, as observed by Henry et al. [16], clients can is-
sue PIR queries to retrieve the part of the encrypted
database they are interested in, and then conduct the
zero-knowledge proofs required in ACOT or POT with
constant communication overhead, thus achieving over-
all the sublinear communication cost required by SPIR.

3. A PIR query on Mrec for the encrypted record. Given
OFFSETi retrieved from Mind above, the client can
determine which row to retrieve from Mrec.

4.3 Efficient server-side Index
The size of a full index goes up to the order of gigabytes in

a terabyte-sized database. This is a manageable size for pri-
vate storage, because accessing that index structure from O
is completely local and does not require any network trans-
missions. For Mind, however, if after each database update,
the entire structure needs to be re-encrypted and transmit-
ted over the Internet, the overhead is rather high and seems
unrealistic to deploy for databases with large numbers of
records.

We propose an enhancement: partition the list of indices
in Mind into p parts part1, · · · , partp. Each of these parts
is organized as a queue of constant limited size, and part
parti contains the indices for records with id ranging from
(i− 1) · dn/pe+ 1 to i · dn/pe (though not in any particular
order, and intermingled with dummy elements). When the
index of a record needs to be updated, an index item should
be appended to the end of the corresponding queue and
when the size of a queue hits its limit, O needs to retransmit
all the encrypted indices for that part. The choice of p will
be discussed later in this section.

Each part is treated as a row in Mind for the database
clients to issue PIR queries; that is, when looking for the
offset of record i in Mrec, the database client will perform
a PIR query to retrieve row di/dn/pee from Mind. This will
be the part containing the offset information for record i
somewhere inside it. In order to find the right index record,
the database client, once it learnsKi, simply tests each MAC
value in the retrieved row to find the right one, which it then
decrypts to yield OFFSETi. The database client should
test the MAC values starting from the end of the queue
to get the most up-to-date OFFSETi. Figure 2 shows the
layout of Mind.

To update an index in partj , the database owner appends
the updated index item to partj for the target record in-
dex, and appends a random string the same length as an

Part 1 · · · Part j · · · Part P − 1 Part P

1 SPIR and PIR Queries2 Update Mrec

Mind

3 Update Mind Database owner O

Figure 3: Mrec is partitioned into P parts. To update a record, the database owner O first reads it through PIR queries, and
then chooses a random part j and a random location i within part j that has not been touched since the last shuffle of part j.
The same j’s and the same i’s are chosen for each server. Part j is reshuffled if it has been accessed F ·

⌈
n
P

⌉
times since its last

reshuffle, where F is a constant that determines reshuffling frequency. O then generates a list of index entries that need to be
updated, and applies these updates to Mind by either re-encrypting and replacing the whole Mind or using the efficient index
update scheme described in Section 4.3.

index item as a dummy item for all the other part. For this
construction to work, we require O to store the entire index
locally.

If we limit each queue size to Q·dn/pe, then for every (Q−
1) dn/pe index changes, O needs to replace each individual
part only once. Thus the amortized end-to-end response
time for updating one index entry is p · (1 + 1

Q−1
) ·U , where

U is the overhead to encrypt an index item and upload it to
` servers; compare this to the n ·U approximate cost for the
naive solution from Section 4.2.

With p equal to 1, we achieve the maximum savings for
update operations, but database clients will need to down-
load the entire indexing structure for each query. A proper
choice of p is required to strike a balance between the effi-
ciency of update operations and PIR queries.

The parts should be initialized to different states to avoid
the replacing of all parts simultaneously; this affords some
measure of de-amortization. When the underlying ORAM
storing Mrec shuffles the locations of multiple records, we
need to update multiple indices in Mind. To avoid leaking
access patterns, the database owner should pad the number
of updates of Mind to the maximum number that might be
produced by the ORAM scheme at that time. When the cost
of doing so becomes too high, it might just be more efficient
to replace the part with an entirely new one using a single
write. It is straightforward to verify that our efficient server-
side indexing structure does not break outsourcing privacy.

4.4 Strawman: Standard ORAM + PIR
We have not touched which specific ORAM scheme should

be used for a concrete construction. It is not immediately
obvious that, by plugging in some arbitrary ORAM scheme,
the resulting system would be secure; a case-by-case secu-
rity analysis is required. In the extended version of this
paper [17], we provide a concrete construction using a stan-
dard ORAM, and argue that the system preserves both of
our privacy constraints using that specific ORAM scheme.

4.5 A more efficient construction: Write-only
ORAM + PIR

We present a concrete construction in this section. In
our construction, we modify the standard ORAM notion,
which allows both private reads and private writes, into a
write-only ORAM model. Before getting to the details, we
consider the observation below.

The vector-matrix multiplication part of Goldberg’s IT-
PIR scheme [10] is easily parallelizable. By utilizing highly
parallelized computation resources, Devet’s experimental re-
sults [6] have shown that computing a PIR query takes time
inversely proportional to the number of cores in use. On the
contrary, parallelizing ORAM accesses is not well studied.
In fact, all of the ORAM schemes we are aware of in the
literature involve expensive computation on the database-
owner side when executing an oblivious reshuffle. Even if
the underlying reshuffling algorithm were parallelizable, the
database owner is unlikely to be able to provide enough
computational resources to take significant advantage of it.
Thus, in a cloud setting, PIR queries have the potential to
be computed quickly for very large databases given enough
cores, while the speed of ORAM access is always somewhat
limited by the available local computation resources.

Inspired by this observation, we propose a write-only Obliv-
ious RAM model for updating database records. In a nut-
shell, in order to update a database record, the database
owner first conducts the read protocol using one SPIR query
(if she does not hold copies of the keys Ki locally) and two
PIR queries as described in Section 4.2, and writes the up-
dated record back to Mrec in an oblivious manner (described
later in this section). Since we do not require Mrec to sup-
port oblivious read operations through the standard ORAM
protocol (as the read operations are protected by the PIR
protocol), Mrec can be organized into a “write-only” ORAM
to allow much more efficient oblivious writes.

If the database owner O simply wishes to read a record
from the database without updating it, she still needs to
write the same record back re-encrypted through an update
operation. This makes read and write operations indistin-
guishable to the servers. We do not make a distinction be-
tween read and write operations from O in the remainder of
this section.

Our construction is similar to that of Stefanov et al.’s
ORAM [20]. However, their ORAM caches up-to-date records
in O’s private storage. We must avoid this in our setting, so
that PIR reads from other clients can be executed while the
database owner is completely offline.

We first describe how Mrec is organized, and what infor-
mation is required to be kept in private storage.
Mrec is partitioned into P parts of equal length, each con-

taining B blocks, with records encrypted and distributed
uniformly at random among the parts and among locations

Database size

64GB 256GB 1TB

R
e
c
o
r
d

s
iz

e 4KB 192 MB 768 MB 3 GB
64KB 12 MB 48 MB 192 MB
1MB 768 KB 3 MB 12 MB
8MB 96 KB 384 KB 1.5 MB

Table 2: Size of private storage required for private index
and unvisited locations, with

√
n parts and a reshuffling fre-

quency F = 0.5. The column headers show the number of
bytes required if the database were to be stored on O with-
out outsourcing; note that if the database is organized as our
write-only ORAM on an untrusted server, there is a storage
overhead inherently required by the ORAM, which is about
(C+F) times in our ORAM scheme. The row headers indicate
varying record sizes.

within each part. Each part should be small enough to fit en-
tirely in O’s private storage, such that an oblivious reshuffle
can be executed efficiently for single part. The client main-
tains a private index, which keeps track of the part number
as well as the offset within the part for each record. She also
keeps track of, for each part i, a list di of locations that have
not been accessed since the last reshuffle of this part.

In order to update a record, O chooses a random part j
in Mrec, a random location i from the list dj , writes the en-
crypted record to the ith block of part j, and removes i from
dj . When a certain part has been accessed F ·

⌈
n
P

⌉
times,

that part is reshuffled. (F is a constant that determines the
frequency of reshuffle operations.) After updating Mrec, O
should update Mind entirely or append encrypted updated
indices to each part of the efficient server index structure in
Section 4.3. If a reshuffle operation occurs, the number of
index items that need to be appended to each part of Mind

should be equal to B. Adding a new record to the database
can be done by replacing a dummy record with a real one,
and deleting a record can be done the other way around. Of
course, there will be a maximum number of records limited
by the initial parameter choice. Figure 3 shows an overview
of our scheme.

The number of records stored in each part changes from
time to time as the protocol runs. According to the stan-
dard bins and balls analysis [19], if P =

√
n, each part

has at most
√
n + O(

√
n) records with a failure probability

of 1
poly(n)

. In order to prevent any part from overflowing,

B = (1 + C + F)
⌈
n
P

⌉
, where C is a constant that controls

the failure probability. A larger C introduces a smaller prob-
ability of part overflow. A larger F improves the amortized
performance, at the cost of slower private reads and reshuf-
fling operations. One should choose a set of B,C, F, P for
a given n that allows B to fit in private storage, while at
the same time does not cause any part to overflow after ex-
ecuting a reasonably large number of private writes. Given
a parameter choice, we have a simulator that simulates mil-
lions of private writes in a few minutes, and reports an error
should any part overflow occur. Since we did not find or
derive any good indication of how the probability of failure
relates to C numerically, we suggest that one should test
her choice of B,C, F, P with the simulator extensively be-
fore deploying the system. In our experiment in Section 5,
we set P =

√
n, C = 0.75 and F = 0.5. We observed not a

single failure.
This protocol makes update operations more efficient for

at least the two reasons below:

1. Each update not involving a reshuffle operation re-
quires only encrypting and uploading a single block
to Mrec, with only a one-way trip to each server.

2. Each part fits entirely in private storage, allowing for
very efficient oblivious shuffling without having to re-
sort to oblivious sorting networks.

Table 2 lists the amount of private storage required to store
the private index and unvisited locations given different record
sizes measured in bytes in our experiments when P =

√
n

and F = 0.5. We use 64 bits to encode record id ’s and
locations, which should be enough for most applications.
Note that each record is encrypted in a block that is slightly
larger than the record itself because of the metadata en-
coded, such as EKi, IVk, etc. Table 3 compares some other
ORAM schemes with our protocol. The pseudocode for the
algorithms appears in Appendix D.

To make sure the database clients have a consistent view
of the database, each of the servers should keep an integer
version number, initialized to zero and incremented per up-
date. A database client can then check and/or specify the
version number of the database to use. We also note that in
any event, the Byzantine robustness of the underlying PIR
will allow for the recovery of the correct ciphertext when
only a small number of servers disagree on the database ver-
sion.

4.6 Pricing and Access Control
In our construction, each record is associated with a unique

key. We enforce pricing and access control when a database
client retrieves this key obliviously, through Camenisch et
al.’s POT [3] or ACOT [2].

We are not innovating in the aspect of pricing and access
control. These techniques are standard in the literature, and
they are treated as a black box in this paper. As discussed in
Section 1.2, however, protecting outsourcing privacy would
not be of interest unless the database owner wishes to enforce
some restrictions on accessing the database.

The cost for zero-knowledge proofs is O(1) in Camenisch
et al.’s OT protocol [2, 3]. Shown by Henry et al.’s experi-
mental result [16], over a 16-gigabyte subset of the Librivox
Free Audio Book Collection (https://librivox.org/), the
overheads for zero-knowledge proofs are less than 100 ms.
This is a promising result, since the zero-knowledge proof
overhead is a constant irrelevant to the size of the database.

5. PERFORMANCE EVALUATION

5.1 Experimental Setup
As a proof of concept, we implemented an end-to-end sys-

tem that fulfills our privacy requirements. We require the
binaries compiled from Percy++ [11], an open-source im-
plementation of Goldberg’s IT-PIR protocol, to make our
system work. We used AES-128 for encryption and 128-bit
HMAC-MD5 for message authentication codes. One client,
one database owner and three servers ran on a machine with
two quad-core 2.5 GHz Intel Xeon E5420 CPUs, 32 GB of
667 MHz DDR2 memory, and Ubuntu Linux 10.04.01. Un-
less otherwise specified, the size of each ORAM block in
Mrec is set to be 1 MB, and when we mention the size of the
database, it is the size of the original database before being
organized into an Oblivious RAM.

Scheme

A
m
o
rt
iz
e
d

C
o
m
p
u
ta

ti
o
n

(W
ri
te

s)

A
m
o
rt
iz
e
d

C
o
m
p
u
ta

ti
o
n

(R
e
a
d
s)

W
o
rs
t-
c
a
se

C
o
m
p
u
ta

ti
o
n

A
m
o
rt
iz
e
d

B
a
n
d
w
id
th

M
u
lt
ip
li
c
a
ti
o
n

N
u
m
b
e
r
o
f

R
o
u
n
d

T
ri
p
s

M
u
lt
ip
le

R
e
a
d
e
rs

Goldreich et al. [12] Θ((logn)3) Θ((logn)3) Θ(n) Θ((logn)3) Θ(logn) ×
Goodrich et al. [15] Θ(logn) Θ(logn) Θ(n logn) Θ(logn) Θ(logn) ×
Williams et al. [23] Θ(logn log logn) Θ(logn log logn) Θ(logn log logn) Θ(logn) Θ(logn) ×
Stefanov et al. [20] Θ(logn) Θ(logn) Θ(

√
n) Θ(logn) Θ(1) ×

This work, on each server for Mrec Θ(1) Θ(n) Θ(
√
n) Θ(1) Θ(1)

This work, on O for Mrec Θ(`) Θ(`
√
n) Θ(`

√
n) Θ(`) Θ(1) XThis work, on each server for Mind Θ(

√
n) Θ(n) Θ(n) Θ(

√
n) Θ(1)

This work, on O for Mind Θ(`
√
n) Θ(`

√
n) Θ(` · n) Θ(`

√
n) Θ(1)

Table 3: A comparison of different ORAM schemes with our work. ` is the number of database servers in our work, and n is the
number of database items. We assume P = p =

⌈√
n
⌉
. Note that the constants behind the Θs for Mind are much smaller than

those for Mrec, as index items (tens of bytes) are significantly smaller than data items (which may be 1 MB, for example).

5.2 Read Performance
We are not benchmarking the read operations over large

databases, mainly for two reasons. First, the performance of
multi-server IT-PIR is well studied in the literature [6, 18],
and the dominating overhead of reads comes from retrieving
the record from Mrec. Second, we do not have enough com-
putational resources available to efficiently handle databases
exceeding the size of our RAM (32 GB). One of the points of
outsourcing PIR is to utilize the distributed storage of the
cloud such that hitting the disk is not necessary and the lin-
ear performance can be maintained for very large databases.
Thus, we analyze our read performance for large databases
below based on prior related works, assuming reasonably
large computational resources available in the clouds.

Devet’s experiment [6] shows that the time for a cloud to
compute a PIR query is inversely proportional to the number
of cores it uses for the computation, which is not a surprising
result at all. To give an idea of how parallelization might
push the boundary of PIR computation, for example, with
the computation power of 256 cores in each untrusted cloud,
we estimate that a PIR query over a 1 TB-sized database
(organized into a 2.25 TB write-only ORAM) takes about
4 seconds to compute using Chor’s IT-PIR [5] option in
Percy++, and less than 2 seconds to transmit between a
server and the PIR client (even if the client has slow ADSL
speeds of 2 Mb/s upload and 10 Mb/s download). To justify
our preference of Chor’s IT-PIR over Goldberg’s scheme [10]
for a large database (e.g. 1 TB), we argue that a realistic
deployment may not use enough different cloud providers in
parallel to effectively take advantage of the Byzantine ro-
bustness of Goldberg’s scheme. The upside of making the
choice to use Chor’s scheme is that it is about 4 times faster
than Goldberg’s in the Percy++ implementation.

5.3 Write Performance
In addition to benchmarking the system on our local ma-

chine, we also simulated the performance of our system run-
ning over ADSL connections. We assume that an ADSL
connection bears upload throughputs of 2 Mb/s and down-
load throughputs of 10 Mb/s respectively. In the simulation,
we keep track of the numbers of bytes encrypted, decrypted
and transmitted, and translate them into access overhead
based on our benchmark. We set the encryption speed to be
121 KB/ms and decryption speed to be 114 KB/ ms in our
simulation. Our estimation of encryption and decryption

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 16384 32768 49152

E
n

d
 t

o
 e

n
d

 R
es

p
o

n
se

 T
im

e
(m

s)

Private write number

Figure 4: Measured end-to-end response time for each private
write to database of size 1 TB (2.25 TB storage required for
Mrec).

speeds is derived from 1000 trials of encryption and decryp-
tion operations on 1 MB blocks. Since our protocol requires,
for each update, only a one-way trip to each server, we do
not simulate the network latency. In this section, a “private
write” does not include first reading the record with PIR
queries.

Unless otherwise specified, we set P (the number of Mrec

parts) to be
√
n, p (the number of Mind parts) to be

√
n,

Q to be 2, and F (parameter for reshuffling frequency) to
be 0.5. We will show and discuss later how the choice of P
affects the performance of our system. Each experimental
trial consists of private write operations between two consec-
utive reshuffles on Mrec. Unless specified, any experiment
or simulation begins with a randomized state and is exe-
cuted with 100 trials. A private write consists of privately
updating both Mrec and Mind.

Figure 4 shows the cost of each update access in 100 ex-
perimental trials (54654 private writes involved) over a 1 TB
database (requiring 2.25 TB of actual server-side storage for
Mrec). We can observe a sparse spectrum of dots around
65536 ms, which corresponds to the cost of reshuffling an
Mrec part. Another sparse spectrum appears between 64 ms
and 4096 ms, corresponding to the cost of replacing one or
more Mind parts. All the dots below 64 ms can be safely
regarded as updates that do not involve any reshuffling op-

0.998

0.99

0.9

0.8

0.5

0.0
 8 32 128 512 2048 8192 65536

P
er

ce
n
ta

g
e

o
f

D
at

a

Access Time (ms)

1 TB
256 GB
64 GB

0.998

0.99

0.9

0.0
8 16 32 64 1024 32768

P
er

ce
n
ta

g
e

o
f

D
at

a

Access Time (s)

1 TB
256 GB
64 GB

Figure 5: Distribution (CDF) of private write costs for databases of different sizes on our local machine (left) and over ADSL
connections (right).

0.998

0.99

0.9

0.8

0.5

0.0
 8 32 128 512 2048 8192 65536

P
er

ce
n
ta

g
e

o
f

D
at

a

Access Time (ms)

P=1024
P=65536

0.998

0.99

0.9

0.8

0.5

0.0
8 16 32 64 1024 32768

P
er

ce
n
ta

g
e

o
f

D
at

a
Access Time (s)

P=1024
P=65536

Figure 6: Distribution (CDF) of private write costs with different choices of P (number of Mrec parts) on our local machine
(left) and over ADSL connections (right). The underlying database size is 1 TB.

erations on Mrec; there are various update costs for these
operations. We observe in our logs that some of them cor-
respond to different numbers of Mind parts being replaced,
and some correspond to different disk access response times.
The amortized access overhead is 182 ms.

Figure 5 shows the distribution (CDF) of write costs for
databases of different sizes on a local machine and over
ADSL connections. On our local machine, most private
writes take less than 100 ms to complete (note the logarith-
mic scale of the y-axis). The spikes nearing the right end of
the x-axis correspond to reshuffling an Mrec part. Since we
do not simulate the hard disk access cost, we observe sharper
spikes on the right figure. The little spike in the middle of
each curve in Figure 5 corresponds to the replacement of
an Mind part. Over ADSL connections, the amortized re-
sponse time for private writes on a 1 TB database is 63.5 s,
but the response time in the worst case exceeds 8 hours.
Having logarithmic part size can trade off worst-case per-
formance for storage overhead and amortized performance,
which is discussed in further detail later in this section. Note
that uploading 1 MB to three PIR servers over ADSL con-
nections without any privacy protection for updates takes
3×1×8Mb
2Mb/s

= 12 s, and our protocol is only about 5 times

slower amortized.
Figure 6 shows the distributions (CDF) of private write

costs for two different choices of P (the number of Mrec

parts) over a 1 TB database on our local machine and over
ADSL connections. We choose P to be 1024 (in the order of√
n) and 65536 (in the order of n/ logn). For both choices of

P , we make extensive simulation in order to choose a proper
C that is just large enough to avoid part overflows. We ob-

serve that for P = 1024, C = 0.75 never causes any overflow,
and that for P = 65536, C = 1.75 never causes any over-
flow. The choice of a large P introduces a larger amortized
response time but a better worst-case performance. Our
simulation results show an amortized response time of 108 s,
and a worst-case performance of 937 s for P = 65536 over
ADSL connections.

Since we are organizing a database instead of a filesystem,
1 MB should be a more representative block size than 4 KB,
which is a widely chosen parameter in the ORAM literature.
We also tested the performance of our system with smaller
block sizes; see Appendix C for details. We do not measure
the throughput of our system, which we believe is not as
important a metric as it would be in a filesystem.

Here are some observations from our experiments. Even
the worst-case performance for private writes over a 1 TB
database is controlled under 10 s with good parameter choices
(P = 65536) on our local machine. Furthermore, our sim-
ulations have also shown a promising result that even over
slow ADSL connections, with a logarithmic part size (P =
65536), the amortized response time for private writes on
a 1 TB database is less than a couple of minutes, and the
worst-case performance is about 15 minutes. With a square
root part size (P = 1024), the response time of private writes
on a 1 TB database is about one minute amortized, and be-
tween 8 to 9 hours in the worst case over ADSL connections.
If updates to the database are infrequent, however, even this
can be acceptable. Table 4 shows how the choice of P affects
the end-to-end performance over ADSL connections. The
database owner can of course opt for a high-speed corporate
Internet connection (at least 50 times faster in uploading and
10 times faster in downloading than ADSL) to dramatically

Part size Amortized cost Worst-case cost
d
√
ne Around 1 minute 8 to 9 hours

dlogne Around 2 minutes 15 minutes

Table 4: End-to-end performance under different choices of
P over ADSL connections.

reduce the end-to-end overhead, since the network trans-
mission is the bottleneck of the private write protocol. As
a reference of how high-speed Internet can affect the per-
formance of our system, if all the transmissions take place
on a single machine, we achieve an amortized end-to-end
response time of 300 ms (see Figures 4 and 5).

6. CONCLUSION
We construct a protocol that allows one database owner

to privately read from and write to a database, and mul-
tiple clients to privately read from the database. The ac-
cess patterns of updates are completely hidden from parties
who are not entitled to read those records, and the read
histories of any user are completely hidden from any par-
ties other than that user, under a standard non-collusion
assumption and common cryptographic assumptions. The
direct application of our protocol is in outsourcing Private
Information Retrieval to untrusted cloud servers with ac-
cess control and pricing. We implement and measure a real
system that shows the practicality of our work for a 1 TB
database. For a terabyte-sized database with one-megabyte
records, a private read can be served in the order of seconds
with moderate cloud computing power, and that a private
write from the database owner incurs an amortized response
time of about one minute over a slow ADSL connection, or
about 300 ms over a fast network.

7. REFERENCES
[1] B. Aiello, Y. Ishai, and O. Reingold. Priced Oblivious

Transfer: How to Sell Digital Goods. In Proceedings of
EUROCRYPT 2001, pages 119–135, May 2001.

[2] J. Camenisch, M. Dubovitskaya, and G. Neven.
Oblivious Transfer with Access Control. In
Proceedings of ACM CCS 2009, pages 131–140,
Chicago, Illinois, Nov 2009.

[3] J. Camenisch, M. Dubovitskaya, and G. Neven.
Unlinkable Priced Oblivious Transfer with
Rechargeable Wallets. In Proceedings of FC 2010,
pages 66–81, Jan 2010.

[4] D. Chaum, R. Carback, J. Clark, A. Essex,
S. Popoveniuc, R. L. Rivest, P. Y. A. Ryan, E. Shen,
A. T. Sherman, and P. L. Vora. Scantegrity II:
End-to-End Verifiability by Voters of Optical Scan
Elections Through Confirmation Codes. IEEE
Transactions on Information Forensics and Security,
4(4):611–627, Dec 2009.

[5] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan.
Private Information Retrieval. Journal of the ACM,
45(6):965–981, Nov 1998.

[6] C. Devet. Evaluating Private Information Retrieval on
the Cloud. Technical Report 2013-05, CACR, 2013.
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-
05.pdf.

[7] C. Devet, I. Goldberg, and N. Heninger. Optimally
Robust Private Information Retrieval. In Proceedings
of the 21st USENIX Security Symposium, Bellvue,
WA, August 2012.

[8] R. Dingledine, N. Mathewson, and P. F. Syverson.
Tor: The Second-Generation Onion Router. In
Proceedings of the 12th USENIX Security Symposium,
pages 303–320, San Diego, California, Aug 2004.

[9] M. Franz, B. Carbunar, R. Sion, S. Katzenbeisser,
M. Sotakova, P. Williams, and A. Peter. Oblivious
outsourced storage with delegation. In Proceedings of
FC 2011, pages 127–140, St. Lucia, Feb-Mar 2011.

[10] I. Goldberg. Improving the Robustness of Private
Information Retrieval. In Proceedings of IEEE S&P
2007, pages 131–148, Oakland, California, May 2007.

[11] I. Goldberg, C. Devet, P. Hendry, and R. Henry.
Percy++. http://percy.sourceforget.net/, 2012.
Accessed January 2013.

[12] O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious RAMs. Journal of the
ACM (JACM), 43(3):431–473, 1996.

[13] M. T. Goodrich and M. Mitzenmacher.
Privacy-preserving access of outsourced data via
oblivious RAM simulation. Automata, Languages and
Programming, pages 576–587, 2011.

[14] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko,
and R. Tamassia. Oblivious RAM simulation with
efficient worst-case access overhead. In Proceedings of
the 3rd ACM Cloud Computing Security Workshop,
pages 95–100, Chicago, Illinois, Oct 2011.

[15] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko,
and R. Tamassia. Privacy-preserving group data
access via stateless oblivious RAM simulation. In
Proceedings of the 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 157–167,
Kyoto, Japan, Jan 2012.

[16] R. Henry, Y. Huang, and I. Goldberg. One (Block)
Size Fits All: PIR and SPIR with Variable-Length
Records via Multi-Block Queries. In Proceedings of
NDSS 2013, San Diego, Feb 2013.

[17] Y. Huang and I. Goldberg. Outsourced Private
Information Retrieval with Pricing and Access
Control. Technical Report 2013-11, CACR, 2013.
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-
11.pdf.

[18] F. Olumofin and I. Goldberg. Revisiting the
Computational Practicality of Private Information
Retrieval. In Proceedings of FC 2011, pages 158–172,
Feb 2011.

[19] M. Raab and A. Steger. Balls into bins, a simple and
tight analysis. In Randomization and Approximation
Techniques in Computer Science, pages 159–170, 1998.

[20] E. Stefanov, E. Shi, and D. Song. Towards practical
oblivious RAM. In Proceedings of NDSS 2012, San
Diego, California, Feb 2012.

[21] S. Wang, X. Ding, R. H. Deng, and F. Bao. Private
information retrieval using trusted hardware. In
Proceedings of ESORICS 2006, pages 49–64, 2006.

[22] P. Williams and R. Sion. Usable PIR. In Proceedings
of NDSS 2008, San Diego, California, Feb 2008.

[23] P. Williams, R. Sion, and A. Tomescu. PrivateFS: a
parallel oblivious file system. In Proceedings of ACM
CCS 2012, pages 977–988, Raleigh, North Carolina,
Oct 2012.

APPENDIX
A. FORMAL SECURITY DEFINITION

We give a formal definition for outsourcing privacy in this
section. Both PIR clients and database servers are our ad-
versaries in our scheme, but PIR clients have strictly less
information than the database servers, so we only consider
the latter in our analysis. The transactions between the
database owner and all servers are identical, except when a
part is downloaded from only one of the servers for reshuf-
fling, which does not give that server any extra information;
therefore, we need only consider one of the servers.

Define an access sequence to be a sequence of record id ’s
the database owner updates. When the database owner up-
dates the records in a particular access sequence, it induces
a sequence of physical block accesses, which forms a tran-
script. The transcript Trans contains a sequence of en-
crypted blocks and index items, and a sequence of locations
in Mrec and Mind to which these ciphertexts are written.

Recall that a record id is “disclosed” to the server if the
server knows its decryption key. This implies that the server
is allowed to see the up-to-date decrypted content of this
record, as well as its decrypted content at any point in the
history. After all, there is not much we can do to prevent
the server (or any other PIR users) from keeping copies of
past versions of the encrypted database.

From the transcript, the server is able to learn some of
the entries in the access sequence by trying to decrypt all
the encrypted blocks and encrypted index items. She might
try to deduce useful information from the sequence of access
locations as well. Consider the game below:
Access Sequence Distinguishing Game. The server
sets the length of the access sequence to be T , and picks
a set of disclosed records DR. The challenger gives it the
keys to, and locations of, those records. The server chooses
two different access sequences A0 and A1 each of length T ,
so long as they agree in all the entries with record id ’s from
DR. The challenger chooses a uniformly random bit β, and
sends back the transcript Trans induced by Aβ . The server
then tries to determine the bit β given the transcript.

We define outsourcing privacy formally as the server wins
the game only with probability 1/2 + ε(κ), where ε is a neg-
ligible function in the security parameter κ from the un-
derlying encryption scheme and pseudorandom permutation
(used for reshuffling parts and determining the sequence of
random locations to access in Mrec).

This definition captures the notion that the server’s ad-
vantage in distinguishing two access sequences that are both
consistent with a seen transcript given the server’s knowl-
edge about disclosed records, is negligible.

B. SECURITY ANALYSIS
In this section, we provide a reduction from the security

of private writes to the security of the underlying encryp-
tion scheme as well as the underlying pseudorandom per-
mutation. We assume that all the database servers and the
database owner are honest-but-curious. This is a reason-
able assumption, since both cloud service providers and the
owner of a large database who can afford such outsourcing
computations are likely to care about their reputations.

We argue that in such an honest-but-curious setting, the
server has only a negligible advantage in winning the access
sequence distinguishing game.

Assume the server were able to gain a non-negligible ad-
vantage of winning the game. First, this advantage cannot
be gained from the portion of Trans corresponding to up-
dating Mind. In the case where the entire Mind needs to be
re-encrypted for every record update, any gained advantage
of distinguishing the two access sequences implies that non-
trivial information is learned from encrypted index items to
which the server does not know the decryption keys. This
would imply that the underlying encryption scheme is not
secure. Similarly, for the efficient construction of Mind in
Section 4.3, an advantage of distinguishing the two access
sequences implies an advantage of distinguishing a valid ci-
phertext from a random string appended as a dummy item,
which also implies that the underlying encryption scheme is
broken.

Next, consider the possible advantage gained through the
portion of Trans corresponding to accessing Mrec.

Note that a pseudorandom location (selected using a pseu-
dorandom permutation) is chosen for each write-back of an
encrypted record, which is independent of the id of the
record being accessed. Thus, no information about id is
revealed from access locations. Any gained advantage of dis-
tinguishing the two access sequences implies that the server
learns something non-trivial from the encrypted blocks she
does not possess the decryption keys to. This also leads
to the conclusion that the underlying encryption scheme is
insecure.

To conclude, if we assume the underlying encryption scheme
and pseudorandom permutation are secure, outsourcing pri-
vacy is fulfilled in our construction.

One might wonder, however, if the execution of private
writes and private reads can be securely composed. We ar-
gue below that this is a needless worry in our case.

First, private reads should not affect the security of private
writes, because the private reads are “read only” operations,
which modify neither Mrec, Mind nor Mkey.

On the other hand, the private write protocol should not
affect the security of the private reads. Assuming the under-
lying PIR queries are secure, no matter which records have
been updated and when, as long as the chosen servers are
in a synchronized state to serve PIR queries, each database
sees three random vectors as input and produces three ran-
dom vectors as output. Also, the write protocol only touches
Mrec and Mind, which is independent of the generation and
verification of the required zero-knowledge proofs.

C. DIFFERENT BLOCK SIZES
We examine how our system performs with a smaller block

size. The result indicates that our system delivers acceptable
performance even over databases with small record sizes.

Figure 7 shows the distributions (CDF) of private write
costs on a 1 TB database for two different block sizes on our
local machine and over ADSL connections respectively. On
our local machine, even though the distributions are quite
different, the amortized end-to-end performance, somewhat
surprisingly, does not differ too much (176 ms for a block size
of 64 KB and 181 ms for a block size of 1 MB). We suspect
that the noise from disk access has dominated the advantage
of processing smaller blocks in a local setting. In our sim-
ulation of the system running over ADSL connections, the
amortized response time of private writes with a block size
of 64 KB is 18 s, and the worst-case performance is 22766 s,
both outperforming the case of a 1 MB block size.

0.998

0.99

0.9

0.8

0.5

0.0
 4 8 32 128 512 2048 8192 65536

P
er

ce
n
ta

g
e

o
f

D
at

a

Access Time (ms)

1 MB blocks
64 KB blocks

0.9999

0.999

0.99

0.9
0.8

0.5
0.0

4 8 163264 1024 32768

P
er

ce
n
ta

g
e

o
f

D
at

a

Access Time (s)

1 MB blocks
64 KB blocks

Figure 7: Distribution (CDF) of private write costs with different choices of block size (of Mrec) on our local machine (left) and
over ADSL connections (right). The underlying database size is 1 TB.

D. PSEUDOCODE

Function : UpdateMRec
Parameters: rid,encryption of record rid
begin

i ← a random part numbered from 1 to P ;
j ← first element from di;
// We shuffle elements in di according to a
// pseudorandom permutation every time di is
// re-generated

remove j from di;

reshuffle threshold ←
⌈
n
P

⌉
· F ;

num access to part i ← num access to part i +1;
write encryption of record rid to the jth location of
part i in Mrec on all ` servers;
if num access to part i == reshuffle threshold then

Download the entire part i from server 1;

Upload re-encrypted and reshuffled part i to all `
servers, generating list of updated records;

di ← list of locations with dummy items in the
new part i;

Shuffle di according to a pseudorandom
permutation;

UpdateMInd(list of updated records, B);
// This is described in Algorithm 2

num access to part i ← 0;
else

UpdateMInd({rid },1);
endif

end
Algorithm 1: Pseudocode on O for updating record rid
in Mrec

Function : UpdateMInd
Parameters: list of updated records,

num updated entries with padding
begin

Update list of updated records to local index;
reshuffle threshold ← (Q− 1) · dn/pe;
for pp← 1 to p do

if num access to part pp +
num updated entries with padding >
reshuffle threshold then

// Replace this part

Encrypt index items for records
(pp− 1) · dn/pe+ 1 to pp · dn/pe;
Replace part pp with the above ciphertexts
on all ` servers;

num access to part pp ← 0;
else

num access to part pp ←
num access to part pp +
num updated entries with padding;

for each rid in list of updated records do
if rid ∈ [(pp− 1) · dn/pe+ 1, pp · dn/pe]
then

Append the encrypted index item for
rid to part pp on all ` servers;

else
Append a dummy index item (random
string) to part pp on all ` servers;

endif

endfor
for count ← 1 to
num updated entries with padding-
Length(list of updated records) do

Append a dummy index item (random
string) to part pp on all ` servers;

endfor

endif

endfor
end
Algorithm 2: Pseudocode on O for updating Mind

