
PRSONA: Private Reputation Supporting
Ongoing Network Avatars

Stan Gurtler∗
sgurtler@cisco.com
Cisco Systems, Inc.

San Jose, California, USA

Ian Goldberg
iang@uwaterloo.ca

University of Waterloo
Waterloo, Ontario, Canada

ABSTRACT
As an increasing amount of social activity moves online, online
communities have become important outlets for their members to
interact and communicate with one another. At times, these commu-
nities may identify opportunities where providing their members
specific privacy guarantees would promote new opportunities for
healthy social interaction and assure members that their partici-
pation can be conducted safely. On the other hand, communities
also face the threat of bad actors, who may wish to disrupt their
activities or bring harm to members. Reputation can help mitigate
the threat of such bad actors, and there has been a wide body of
work on privacy-preserving reputation systems. However, previous
work has overlooked the needs of small, tight-knit communities,
failing to provide important privacy guarantees or address short-
comings with common implementations of reputation. This work
features a novel design for a privacy-preserving reputation system
which provides these privacy guarantees and implements a more
appropriate reputation function for this setting. Further, this work
implements and benchmarks said system to determine its viability
in real-world deployment. This novel construction addresses short-
comings with previous approaches and provides new opportunity
to its target audience.

CCS CONCEPTS
• Security and privacy→ Pseudonymity, anonymity and un-
traceability; Privacy-preserving protocols; Public key encryption;
Social aspects of security and privacy.

KEYWORDS
anonymity, privacy, reputation

ACM Reference Format:
Stan Gurtler and Ian Goldberg. 2022. PRSONA: Private Reputation Support-
ing Ongoing Network Avatars. In Proceedings of the 21st Workshop on Privacy
in the Electronic Society (WPES ’22), November 7, 2022, Los Angeles, CA, USA.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3559613.3563197

∗This work was conducted at the University of Waterloo.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WPES ’22, November 7, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9873-2/22/11. . . $15.00
https://doi.org/10.1145/3559613.3563197

1 INTRODUCTION
With the aid of the internet, individuals have become empowered
to forge novel and powerful connections with each other. A variety
of groups have been able to connect even from within geopolitical
regions that are hostile towards them (as in the case of LGBTQ in-
dividuals) [30]. Online communities have made significant positive
impact on countless individuals. However, such communities have
also been targeted by malicious individuals who pose as legitimate
members to aid their campaigns of stalking and harassment [24].

Meanwhile, places these communities currently gather online
have proven inadequate for their needs in various ways. Members
of such communities face abuse on social media sites and other
gathering places from bad actors [3, 24, 29]. Social media platforms
frequently lack robust methods for addressing abuse, and also may
impose their own rules and policies that conflict with the standards
the communities desire. For example, LGBTQ individuals may want
to keep identifying information apart from their participation in
such communities. The platforms themselves can also drive commu-
nity dynamics in undesirable ways. Some advocates have called for
adjustments toward “human-scale social media” [7, 1:29:16], explic-
itly because the sorts of engagement that social media algorithms
currently drive towards can lead to unhealthy interactions [17].

In order to incentivize good behaviour and disincentivize bad be-
haviour, communities often choose to employ reputation. Platforms
like Reddit provide a model. In such a system, reputation measures
good-faith participation within the community. Though reputation
has been used for a large portion of the internet’s lifetime on sites
like eBay and Amazon, the privacy needs of these communities re-
quire careful consideration. Further, previous implementations are
frequently not well suited to address the problem at hand for such
communities. These communities want to identify misbehaviour
and incentivize members to correct it. However, with Reddit-style
reputation, a user may amass a great amount of reputation that
they can effectively “spend” to misbehave. Further, these systems do
not always protect the privacy of their users. Metadata associated
with votes and participation may be able to de-anonymize users
via long-term linkage of their activities. Such de-anonymization
can endanger users, by revealing to abusive individuals that said
users have acted in some manner against them.

We propose a novel system, PRSONA, or Private Reputation Sup-
porting Ongoing Network Avatars, in order to enable community
protection and maintenance while addressing these previous short-
comings. Importantly, PRSONA is designed with usage in these
community settings in mind; the privacy guarantees it provides
and the reputation function (the method of combining ratings into
a single score) it uses were selected for the opportunities they pro-
vide in such settings. The reputation function in particular is more

https://doi.org/10.1145/3559613.3563197
https://doi.org/10.1145/3559613.3563197

WPES ’22, November 7, 2022, Los Angeles, CA, USA Stan Gurtler and Ian Goldberg

Table 1. Comparison of recent privacy-preserving reputation systems, excerpted from Gurtler and Goldberg’s systematization [12, Table 1],
and adding more recent work, as well as our own work, PRSONA

Name Year Cen
tral

izat
ion

Dir
ecti

ona
lity

Rep
. Sc

ope

Rep
. Ow

ner
ship

Cor
rect

nes
s

Unl
ink

abl
e to

TTP

T
TP

for
Setu

p

T
TP

Ong
oin

g

Mo
re v

ia A
nyt

rus
t

V-V
Unl

ink
abi

lity

2V
Unl

ink
abi

lity

R-U
Unl

ink
abi

lity

Exa
ct R

ep.
Blin

din
g

Acc
. St

ars

Avg
. St

ars

STM
C
LTM

C

System Structure Trust Privacy Rep.

PFWRAP [33] 2016 p ↔ ∃ s 0 0 - - - - -
Beaver [28] 2016 ∴ → ∀ d 0 0 - - - - -
AnonRep [32] 2016 ⋆ ↔ ∀ d 2 2 - -
EARS [19] 2020 ⋆ ↔ ∀ d 1 1 - - - - -
Dimitriou [8] 2021 ∴ ↔ ∀ d 1 0 - -
PRSONA (honest-but-curious)

}
This
Work

⋆ ↔ ∀ d - 2 2 - -
PRSONA (covert) ⋆ ↔ ∀ d 2 2 - -

Reputation Attributes
Centralization: ⋆ = Third-Party Mediation p = Ephemeral Mesh Topology ∴ = Proofs of Validity
Directionality: → = Simplex ↔ = Full-Duplex
Scope: ∀ = Global ∃ = Local
Ownership: d = TTP-owned s = Voter-owned
Correctness: via... = ...protocol guarantees = ...errors are traceable - = ...TTP/miners
Trust Unlinkability: TTP can link... = ...nothing = ...misbehaviour

complex than the simple ones commonly used in other systems,
taking into account the user who is giving feedback when deter-
mining a user’s reputation score — such a reputation function is
termed a “voter-conscious reputation function” in our previous
work [12]. Other common functions cannot do so and thus are
not able to allow users to replace previous feedback, which can
enable abuse of the reputation function. Further, we implement and
benchmark this system; this implementation is available online at
https://git-crysp.uwaterloo.ca/tmgurtler/PRSONA.

Section 2 of this paper discusses previous work, including pre-
vious systematization of the broader area. Section 3 describes the
cryptographic tools we use to build PRSONA. Section 4 details
the overall approach to designing PRSONA, as well as relevant
assumptions. Section 5 outlines the design of PRSONA and its algo-
rithms. Section 6 describes and benchmarks our implementation
of PRSONA. Section 7 gives analysis of PRSONA’s practicality for
real-world deployment, and Section 8 concludes.

2 RELATEDWORK
Anumber of privacy-preserving reputation systems have previously
been proposed. Our previous work [12] provides a systematization
of the space, and for purposes of standardization, we adopt the
same terminology used there. For example, a voter expresses their
opinion of a votee using a vote. Table 1 excerpts selected previous
work from that systematization [12, Table 1], chosen due to their
representativeness and relevance to PRSONA’s targeted use case.
We also add more recent work and PRSONA itself to the table.

In Table 1, we first identify four factors corresponding to a repu-
tation system’s structure — its overall approach to centralization,
in what direction reputation flows, the scope of reputation (i.e.,
whether every user’s view of a specific user’s reputation score is
the same), and which entity holds on to the value that becomes a
reputation score. Second, we identify five factors corresponding to
the trust placed in third parties by a system — how correctness in
the system is ensured, whether or not trusted third parties (TTPs)
must be trusted with user privacy, how many TTPs are needed to
first set up and then continuously run the system, and whether
additional TTPs being added adds a potential point of failure or
distributes the same amount of trust across more nodes. Third, we

identify the privacy properties provided by each system. Fourth,
we identify the reputation functions supported by each system.

Beaver [28] and the proposal by Dimitriou [8] both target trans-
actional settings, like those of eBay or Amazon, and both use some
form of append-only public ledger. In both, reputations are associ-
ated with the goods a votee sells. In Beaver’s work, users provide
feedback as an unidentified member of a known set of users who
transacted with a votee. Dimitriou’s proposal involves generating
coins whose value constitutes the feedback. These are state-of-
the-art transaction-based privacy-preserving reputation systems,
but they miss key features for community usage (such as voter-
conscious reputation functions and certain privacy properties).

Among Secure Multiparty Computation-based (SMC-based) rep-
utation systems, PFWRAP [33] represents the state of the art. A
reputation system is derived from secure (weighted) sum, and
PFWRAP makes significant efficiency gains over previous similar
approaches [2, 23, 31]. These systems are able to provide voter-
conscious reputation systems, but miss key privacy properties and
require that voters are always online when a user wants to see
feedback on a votee.

EARS [19] is one of the few non-SMC-based systems to enable
updating votes (and thus, voter-conscious reputation functions),
doing so with blind and partially blind signatures. However, EARS
requires significant amounts of trust in the issuer of these blind
and partially blind signatures, which is undesirable in our setting.

AnonRep’s [32] broad approach (using TTPs to perform a peri-
odic verifiable shuffle of internal data to enable users to regularly
change pseudonyms without linking themselves) inspired our own.
However, AnonRep is incapable of enabling voter-conscious rep-
utation functions. PRSONA is designed for communities where it
is expected that any member could reasonably have interactions
with and form opinions of every other member, a property we term
“tight-knit”. This property is related to Dunbar’s number [9], the
number of people with whom one person can maintain stable social
relationships; recent estimates for this number range up to about
500 [20]. Tight-knittedness is directly modeled by the reputation
function that PRSONA uses; every voter provides exactly one input
on every votee. AnonRep, in contrast, cannot support such repu-
tation functions. Its reputation function has all votes for a votee
summed to calculate a score. A voter can provide multiple votes for

https://git-crysp.uwaterloo.ca/tmgurtler/PRSONA

PRSONA: Private Reputation Supporting Ongoing Network Avatars WPES ’22, November 7, 2022, Los Angeles, CA, USA

Figure 1. During each epoch, PRSONA users are assigned a new “fresh pseudonym”
(public key 𝑋𝑡 for epoch 𝑡 , depicted here as hats) to interact with. Ratings from
previous epochs are recalculated and carried over to the next epoch’s pseudonyms.

a votee over time, weighting their input more heavily on the basis of
their persistence, rather than appropriateness. Additionally, voters
may be reticent to provide feedback in any cases but those of strong
positive or negative reaction, knowing that a carelessly given vote
will be credited to or held against a votee forever. These drawbacks
allow more opportunity for a user to abuse the reputation function
in AnonRep than in PRSONA.

3 CRYPTOGRAPHIC TOOLS
In order to accomplish its goals, PRSONA uses ElGamal and BGN
encryptions in various places. For efficiency reasons, our implemen-
tation of PRSONA uses a prime-order version of BGN, and more
detail on the exact libraries we build upon to do so is provided in
Section 6.1.

3.1 ElGamal
The ElGamal cryptosystem was first proposed in 1985 [10]. In
PRSONA, we use a scheme containing two variations from the
originally proposed design. First, we put the message in the expo-
nent of the group, so that we can encode integers. Second, in our
version of the scheme, ciphertexts swap where a user’s public key
(𝑋) and the group’s generator (𝔤) are used from the more typical
ElGamal construction. This is necessary to support the way that
PRSONA prevents servers from learning the linkage of a user’s iden-
tity over time, and more detail on this is provided in Section 5.3.3.
The full construction is as follows:
• EGGroupKeyGen(1𝜆): Let G be a cyclic group generator.
Compute (𝔊, 𝔤, 𝑞) ← G(1𝜆), where 𝔤 generates𝔊, a cyclic

group of order𝑞. Choose 𝔥
$←𝔊. Output the shared elements

𝐸 = (𝔊, 𝔤, 𝔥, 𝑞).
• EGUserKeyGen(𝐸): Choose 𝑥

$← Z∗𝑞 and compute 𝑋 = 𝔤𝑥 .
Output the public key 𝑃𝐾 = (𝐸,𝑋) and the secret key 𝑆𝐾 =

𝑥 .
• EGEncrypt(𝑃𝐾,𝑚): Choose 𝑟

$← Z∗𝑞 . Output the ciphertext
𝐶 = (𝐶1,𝐶2) = (𝑋𝑟 , 𝔤𝑟 · 𝔥𝑚) ∈𝔊2.
• EGDecrypt(𝑆𝐾,𝐶): Compute𝑦 = 𝑥−1 ∈ Z∗𝑞 . Note that, since
𝐶1 = 𝑋𝑟 , 𝐶𝑦

1 = 𝔤𝑟 . Output𝑚 = log𝔥 (
𝐶2
𝐶

𝑦

1
).

Note that although EGDecrypt(𝑆𝐾,𝐶) involves calculating a dis-
crete log, the range of values in use in PRSONA that would be
encrypted in this manner is very limited (falling within [0, 2𝑛], for
𝑛 the number of users in the system). With such a small range of
values, brute forcing this discrete log is not challenging.

In PRSONA, we make one minor change: instead of one constant
𝔤 used in perpetuity in the system, PRSONA operates in epochs, as

in Figure 1. In each epoch 𝑡 , the PRSONA servers calculate a new
𝔤𝑡 , in such a way that all user public key 𝑋 s are updated as well
(denoted 𝑋𝑡 = 𝔤𝑥𝑡). This is detailed further in Section 5.3.

3.2 Prime-order BGN
While the above variant of ElGamal is additively homomorphic,
our application additionally requires (depth-1) multiplication. This
additional property is provided by the BGN [5] cryptosystem.

The BGN cryptosystem involves three components: a group, a
proper subgroup for which it is infeasible (without the private key)
to determine whether an arbitrary member of the group is also
a member of the subgroup, and a projection operator (using the
private key) that removes the subgroup component from group
elements. In the original construction, the group is an elliptic curve
with order a product of two primes (and so thousands of bits long),
and the projection operator removes one of the primes. For effi-
ciency purposes, we implement a prime-order BGN construction
that was first suggested by Freeman [11]. In this construction two
order 𝑝2 (for 𝑝 prime) groups are selected (𝐺 , 𝐻 ; both consist of
pairs of elements of order-𝑝 asymmetric pairing groups). Two sub-
groups (𝐺1 generated by 𝑔′ and 𝐻1 generated by ℎ′; both are order
𝑝) and their corresponding projection operators (𝜋1, 𝜋2) are cho-
sen. Finally, defining a pairing 𝑒 with elements of 𝐺 and 𝐻 results
in elements of 𝐺𝑇 ; the subgroups 𝐺1 and 𝐻1 also implicitly de-
fine a subgroup 𝐺 ′

𝑇
of 𝐺𝑇 and a corresponding projection operator

𝜋𝑇 . The operation for generating these groups and projections is
denoted GP (1𝜆).

We make no significant changes from Freeman’s construction.
The full construction can be seen in Appendix A, and we highlight
the portions of the construction relevant to our system as follows:

• BGNKeyGen(1𝜆): Compute (𝐺,𝐺1, 𝐻, 𝐻1,𝐺𝑇 , 𝐺
′
𝑇
, 𝑒, 𝜋1, 𝜋2,

𝜋𝑇) ← GP (1𝜆). Choose 𝑔
$← 𝐺 , ℎ

$← 𝐻 . Output the public
key 𝑃𝐾 = (𝐺,𝐺1, 𝐻, 𝐻1, 𝐺𝑇 , 𝑒, 𝑔, ℎ) and the secret key 𝑆𝐾 =

(𝜋1, 𝜋2, 𝜋𝑇).
• BGNEncrypt(𝑃𝐾,𝑚): Choose 𝑔1

$← 𝐺1 and ℎ1
$← 𝐻1 and

output the ciphertext (𝐶𝐴,𝐶𝐵) = (𝑔𝑚 · 𝑔1, ℎ𝑚 · ℎ1) ∈ 𝐺 ×𝐻 .
• BGNMultiply(𝑃𝐾,𝐶𝐴,𝐶𝐵): This algorithm takes as inputs

two ciphertexts 𝐶𝐴 ∈ 𝐺 and 𝐶𝐵 ∈ 𝐻 . Choose 𝑔1
$← 𝐺1 and

ℎ1
$← 𝐻1, and output𝐶 = 𝑒 (𝐶𝐴,𝐶𝐵) · 𝑒 (𝑔, ℎ1) · 𝑒 (𝑔1, ℎ) ∈ 𝐺𝑇 .

• BGNAdd(𝑃𝐾,𝐶,𝐶 ′): This algorithm takes as input two ci-

phertexts 𝐶,𝐶 ′ in one of 𝐺 , 𝐻 , or 𝐺𝑇 . Choose 𝑔1
$← 𝐺1 and

ℎ1
$← 𝐻1, and do as follows:

1. If 𝐶,𝐶 ′ ∈ 𝐺 , output 𝐶 ·𝐶 ′ · 𝑔1 ∈ 𝐺 .
2. If 𝐶,𝐶 ′ ∈ 𝐻 , output 𝐶 ·𝐶 ′ · ℎ1 ∈ 𝐻 .
3. If 𝐶,𝐶 ′ ∈ 𝐺𝑇 , output 𝐶 ·𝐶 ′ · 𝑒 (𝑔, ℎ1) · 𝑒 (𝑔1, ℎ) ∈ 𝐺𝑇 .
• BGNDecrypt(𝑆𝐾,𝐶): The input ciphertext can be an ele-
ment of 𝐺 , 𝐻 , or 𝐺𝑇 .
1. If 𝐶 ∈ 𝐺 , output𝑚 ← log𝜋1 (𝑔) (𝜋1 (𝐶)).
2. If 𝐶 ∈ 𝐻 , output𝑚 ← log𝜋2 (ℎ) (𝜋2 (𝐶)).
3. If 𝐶 ∈ 𝐺𝑇 , output𝑚 ← log𝜋𝑇 (𝑒 (𝑔,ℎ)) (𝜋𝑇 (𝐶)).

We further define two derivative functions that are helpful for
our purposes:

WPES ’22, November 7, 2022, Los Angeles, CA, USA Stan Gurtler and Ian Goldberg

Figure 2. The data flow PRSONA uses to generate each user’s reputation score. Note
that this is done in parallel for all users. Step I depicts voting (Section 5.2.2). Voters
may submit votes to any server or to none (in which case they would continue using
a previously specified vote). Step II depicts score calculation, which is performed
during epoch changeover (Section 5.3). More detail on this step can be observed in
Figure 4. Step III depicts feedback, a component of our reputation function where
previous reputation scores influence future calculations (Section 4.4). Step IV depicts
publication, where a votee receives their score from the servers and may use it in
interactions with other users (Section 5.2.1).

• BGNEncrypt𝐺 (𝑃𝐾,𝑚): Compute and output only the first
component 𝐶𝐴 ∈ 𝐺 of BGNEncrypt(𝑃𝐾,𝑚).
• BGNEncrypt𝐻 (𝑃𝐾,𝑚): Compute and output only the sec-
ond component 𝐶𝐵 ∈ 𝐻 of BGNEncrypt(𝑃𝐾,𝑚).

Note that although BGNDecrypt(𝑆𝐾,𝐶) involves calculating a
discrete log, the range of values in use in PRSONA that would be
encrypted in this manner is limited (these values fall within [0, 4𝑛2],
for 𝑛 the number of users in the system). Though this range is larger
than that of EGDecrypt(), brute forcing this discrete log is still
within reason, or it can be calculated in time O(𝑛) with the Pollard
kangaroo method [25].

We assume that it is possible for the group homomorphisms 𝜋1,
𝜋2, and 𝜋𝑇 (and thus the BGNDecrypt operation) to be generated
distributively such that multiple entities must jointly calculate them.
These homomorphisms involve raising group elements to specific
combinations of integer factors. By distributing a specific subset
of these factors across multiple parties, this is straightforward to
calculate in a distributed manner.

4 OVERVIEW
In this section, we lay out the design choices made by PRSONA. A
high-level workflow can be seen in Figure 2. We draw inspiration
in part from a previous system, AnonRep [32]. Similar to AnonRep,
PRSONA is specifically intended for use in forum-like settings,
where members of a community interact and form opinions of
one another regularly. PRSONA differentiates itself from AnonRep
in particular by its choice of reputation function, which is better
tailored for use by small, tight-knit communities.

4.1 Architecture
In PRSONA, there are two types of nodes: users, who act as both
voters and votees, and servers, who maintain the accuracy of repu-
tation. Users are untrusted and are not required to be constantly
online. Servers have some trust placed in them (detailed in Sec-
tion 4.2), and are assumed to be highly available. We expect servers
to be operated independently. Given the forum and community
settings that PRSONA is tailored to, these servers could logically
be operated by various stakeholders within said community.

Users communicate with any server. Tracking their reputation,
making and giving feedback, and verifying other users’ reputations
can all be donewhile interactingwith only one server. Users confirm
the correctness of a server’s response with other servers.

4.2 Threat Model
In PRSONA, users are fully untrusted. They may collude with one
another; when they do so, the systemmust not leak any information
beyond what colluding users can conclude from their inputs and
the output.

Servers in PRSONA may operate in one of two settings, per im-
plementer’s choice. First, in the honest-but-curious setting, servers
may inspect user input, so long as they honestly follow the protocols
of the system. This places a great deal of trust in the servers, but this
trust comes with greater speed and efficiency of server operations,
as servers perform fewer proofs of their correct behaviour than in
our other setting. Second, in the covert setting (as first suggested
by Aumann and Lindell [4]), servers may behave however they like,
with one restriction. Servers may take no action for which they
would (with non-negligible probability) be incriminated for deviat-
ing from the protocol, unlike a malicious adversary, who could take
advantage of the probability that they are not immediately caught.

In addition to those restrictions, there are limitations on how
many servers may collude. Like previous work, so long as any one
server is honest, the privacy properties PRSONA guarantees will
hold. However, the accuracy of scores can only be guaranteed in
the covert setting as long as a majority of servers behaves honestly.

PRSONA protects against linking a user’s score to their identity,
but it does not protect the multiset of plaintext reputation scores.
That is, PRSONA does not prevent any entity from learning what
reputation scores are held by some user each epoch.

Though we separate out the two in our analysis, design, and
implementation, a method exists to hybridize the covert and honest-
but-curious settings. This hybrid approach provides security against
a covert adversary, while only requiring an online cost in line with
the honest-but-curious setting (along with an offline cost that is still
in line with the covert setting). We examine this hybrid approach
in greater detail in Section 7.

4.3 Security Goals
Anonymity. The primary goal of PRSONA is to allow a user to
maintain ongoing participation in the systemwithout allowing their
activities to be linked together. To that end, we seek to provide four
specific privacy guarantees to users. For the sake of standardization,
we use the same terms as our previous work [12], with the same
definitions (guaranteed for users against all other entities, server
or otherwise):

Voter-Vote Unlinkability: a voter cannot be associated with
a (plaintext) vote they cast, or with the fact that they voted for a
particular votee.

Two-VoteUnlinkability: it is not possible to distinguishwhether
two (plaintext) votes were cast by the same voter or not.

Reputation-Usage Unlinkability: a votee can display or use
their reputation to accumulate new votes without enabling others
to identify that said votee was the user who performed another
specific reputation use elsewhere.

Exact Reputation Blinding: a mechanism is provided for vo-
tees to display or use their reputation without giving an exact score.

Server misbehaviour detection. As a secondary goal, PRSONA
intends to make all server misbehaviour detectable. Put another

PRSONA: Private Reputation Supporting Ongoing Network Avatars WPES ’22, November 7, 2022, Los Angeles, CA, USA

way, when considering the covert setting, whatever misbehaviour
is not outright prevented will identify the perpetrating servers.
Non-goals. PRSONA does not make any attempt to protect against
Sybil attacks directly. This is considered out of scope for PRSONA;
in order to participate, it is assumed that there is some mecha-
nism to ensure that any given user is only registered in PRSONA
once. PRSONA does not make any effort to prevent network-level
Denial-of-Service attacks. This is a robust area of study, and many
defences [1, 13, 16, 18, 26, 27, 34] that have already been designed for
such attacks could be deployed in concert with PRSONA. PRSONA
does not attempt to mitigate any potential stylometry attacks [22].
PRSONA’s focus is on preventing structural leakage of sensitive
user data rather than any content-based leakage.

4.4 Reputation Function
In PRSONA, a user’s reputation represents their behaviour within
a particular community. A low reputation indicates that a user
misbehaves or is otherwise making themselves unwelcome, while
a high reputation indicates that a user exemplifies the behaviour
a community wishes to see. As users become dissatisfied with the
behaviour of an individual, said individual receives feedback that
allows them to course-correct. Further, users with high reputations
cannot ignore honestly given feedback without repercussion.

Users (or servers) may choose a threshold reputation score, be-
low which users face restrictions. Significant enough misbehaviour,
as recognized by enough other users, would put an individual into
either a warning or a restricted state. This is intended to address
trolling and abuse; an individual who comes to a community in-
tending only to disrupt it must face consequences. Choosing an
appropriate threshold must be done with care.

In order to generate reputation scores in line with our expecta-
tions, we chose “Short-Term Memory Consensus — Weighted” as
PRSONA’s reputation function. Long-Term Memory Consensus can
also be implemented with only minor alterations. As we discuss in
previous work [12], in Short-Term Memory Consensus, each voter
has one direct input to the reputation score of every other user.
This input (vote) may be updated at any time. Due to this update
function, a votee can experience relatively quick swings in their
score when several voters switch their votes from positive to nega-
tive (or vice versa). “Weighted” indicates that a voter’s inputs are
weighted by their own (current) reputation. Short-Term Memory
Consensus is an example of a voter-conscious reputation system —
one that takes some aspect of the voter (e.g., their reputation) into
account when calculating their contribution to a votee’s score.

4.5 Data Types
During setup, the PRSONA servers run EGGroupKeyGen(1𝜆) and
BGNKeyGen(1𝜆) to obtain and make public the ElGamal and BGN
parameters (𝔊, 𝔤, 𝔥, 𝑞) and (𝐺,𝐺1, 𝐻, 𝐻1,𝐺𝑇 , 𝑒, 𝑔, ℎ), respectively.
They simultaneously distribute (𝜋1, 𝜋2, 𝜋𝑇) to each other such that
a threshold of servers must cooperate to execute BGNDecrypt().
In our instantiation, we require said threshold to be all servers, to
maintain our privacy guarantees.

PRSONA operates in rounds or epochs. The PRSONA servers
collaboratively maintain an Epoch Generator (that is, the group
generator corresponding to the epoch) 𝔤𝑡 ∈𝔊, where 𝑡 represents

Figure 3. PRSONA uses a variant of Short-Term Memory Consensus (STMC) as its
reputation function. In STMC, each user gets one replaceable vote for each other user.
In this image, encryption is represented by the stripes on each vote. Here we can see
the vote matrix shuffling and re-randomizing every vote between epochs, as well as
the third row updating as voter C casts a new vote for votee A.

the current epoch. The PRSONA servers collaboratively generate
𝔤𝑡 once at the beginning of each epoch. When at least one server
behaves honestly, the output 𝔤𝑡 itself is random.

A variety of data corresponds to PRSONA users during their
participation in the system, some of which they hold directly, and
some of which is held by the servers. A brief overview of this data
follows; how it is actually maintained and used is elaborated in
Section 5. Items marked (U) indicate they are held exclusively by
users; (S) exclusively by servers; and (B) by both users and servers.

• Long-Term Secret Key (U):When users register to partici-
pate in the system, they must choose a long-term secret key

𝑥
$← Z∗𝑞 .

• Fresh Pseudonym (B): At all times, users have a pseudo-
nym 𝑋𝑡 = 𝔤𝑥𝑡 corresponding to the epoch 𝑡 .
• Plaintext Votes (U): Voters give feedback for votees as
votes. These votes in plaintext must be one of the follow-
ing values: {0, 1, 2} (i.e., {“negative”, “neutral”, “positive”}).
A voter is assumed to have a neutral opinion of any votee
they have not explicitly rated.
• Ciphertext Votes (B): PRSONA servers receive encrypted
votes, as outputs of BGNEncrypt𝐻 (). These votes can only
be decrypted by a threshold of servers. Each PRSONA server
stores these in parallel as a vote matrix. The matrix is 𝑛-
by-𝑛, for 𝑛 users in the system. Each row represents all the
votes cast by one voter, and each column represents all the
votes received by one votee. This vote matrix is permuted
randomly each epoch. A visualization of the vote matrix can
be seen in Figure 3.
• Server-Encrypted Reputation List (S): In order to calcu-
late Short-Term Memory Consensus — Weighted, the previ-
ous epoch’s reputation score for each user is required. The
PRSONA servers store this as the output of BGNEncrypt𝐺 ().
• User-Encrypted Reputation List (B): Users must be able
to know and use their own reputation scores. These are gen-
erated as the output of EGEncrypt(), encrypted to the rele-
vant user’s new fresh pseudonym for the upcoming epoch.

5 DESIGN
Asmentioned before, PRSONA operates in epochs. At the beginning
of each epoch, users are assigned a new “fresh pseudonym”, which
is unlinkable to any previous or future fresh pseudonyms they have

WPES ’22, November 7, 2022, Los Angeles, CA, USA Stan Gurtler and Ian Goldberg

held or will hold. In practice, this fresh pseudonym is a public key,
to which users are able to prove ownership of a corresponding
long-term secret key with a straightforward zero-knowledge proof
(ZKP): {(𝑥) : 𝑋𝑡 = 𝔤𝑥𝑡 }. (We display all ZKPs in Camenisch-Stadler
notation [6].)

With this fresh pseudonym, users are able to participate in a
forum, by posting messages signed by their fresh pseudonym and
evaluating other users according to their fresh pseudonyms. If a
user posts multiple messages within an epoch, all such messages
will be clearly associated with the same fresh pseudonym for that
epoch. However, messages posted by the same user in different
epochs (and thus under different fresh pseudonyms) are not able to
be linked, unless the user explicitly chooses to link them through
some external mechanism. If a user votes within an epoch, an
adversary can learn that they updated their vote row, but will gain
no information on whom they gave a vote for (if anyone), nor the
content of any votes.

At the end of each epoch, the servers recalculate each user’s
reputation score. The servers are able to learn the distribution of
scores, but not which user has which score. Simultaneously, the
servers generate new fresh pseudonyms for each user and a new
epoch generator, before beginning a new epoch.

5.1 User Registration
A new PRSONA user must register with the servers in order to
participate. As mentioned previously, each epoch, the servers col-
laboratively calculate an epoch generator (𝔤𝑡 ∈𝔊, corresponding to
epoch 𝑡) for the group the PRSONA servers generated at setup time
via EGGroupGenKey(1𝜆). Before registering, a prospective user
requests the epoch generator, signed by all servers. Then, the user

𝑘 chooses 𝑥𝑘
$← Z∗𝑞 and generates a key pair ⟨𝑋𝑘,𝑡 = 𝔤

𝑥𝑘
𝑡 , 𝑥𝑘 ⟩. 𝑋𝑘,𝑡

is user 𝑘’s fresh pseudonym for epoch 𝑡 , and 𝑥𝑘 is their long-term
private key. The client then submits 𝑋𝑘,𝑡 to a randomly selected
server, along with the following ZKP: {(𝑥𝑘) : 𝑋𝑘,𝑡 = 𝔤

𝑥𝑘
𝑡 }.

Said server encrypts default (neutral) values for the user’s votes
on all existing users, all other existing users’ votes for said new
user, and the user’s initial reputation score. As these default values

are known to all, the randomness in the selection of 𝑔1
$← 𝐺1 and

ℎ1
$← 𝐻1 in BGNEncrypt can be omitted, simply setting 𝑔1 to 𝑔′

(the generator of 𝐺1), and similarly for ℎ1. The other servers see
the initial proof of a valid fresh pseudonym, confirm that the votes
and score are correct (deterministic) encryptions of the appropriate
defaults, and update their own data stores to add the new user.

It is possible for a covert server to ignore a user’s request to be
added. A user could easily detect such a case by requesting infor-
mation from other servers to verify that their data stores have been
updated. A user in this scenario would not be able to incriminate
said server, but would not lose any privacy, and would be able to
attempt registration again with a new server.

5.2 User Participation
Once a user is registered, they may participate in PRSONA in two
ways: posting (which requires sufficient Reputation), and Voting.

5.2.1 Reputation. Between each pair of epochs, a record of each
user’s reputation score is encrypted to their fresh pseudonym for
the new epoch. This encrypted score is the output of EGEncrypt(),

of the form (𝐶1 = 𝑋𝑟
𝑘,𝑡
,𝐶2 = 𝔤𝑟𝑡 · 𝔥𝑧𝑘), for 𝑟

$← Z∗𝑞 and 𝑧𝑘 the user’s
score. They may request this record, and then use it to create a ZKP
that their reputation score is above a given threshold: {(𝑥 ′

𝑘
, 𝑧𝑘) :

𝑋
𝑥 ′
𝑘

𝑡 = 𝔤𝑡 ∧ 𝑧𝑘 ∈ [𝜃, 2𝑛] ∧ 𝐶2 = 𝐶
𝑥 ′
𝑘

1 · 𝔥
𝑧
𝑘
} where 𝑥 ′

𝑘
= 𝑥−1

𝑘
, 𝜃

the publicly communicated threshold the user is above, and 𝑛 the
number of users. Note that 2𝑛 is the greatest possible score a user
can have in PRSONA. The size and complexity of this ZKP is at
worst logarithmic in the size of the range between 𝜃 and 2𝑛.

A verifier of this proof would request (𝑋𝑘,𝑡 , (𝐶1,𝐶2)) directly
from the servers; the response would be signed by a threshold of
servers. Here, a majority of servers would be sufficient to prove
correctness.

5.2.2 Voting. Each post that a user makes will be tagged with their
current fresh pseudonym. This allows other users to evaluate their
behaviour and give feedback. These evaluations come in the form of
votes, which are sent to servers as the output of BGNEncrypt𝐻 ()
(such values having form 𝑉 = ℎ𝑣 · ℎ′𝑟 , for 𝑣 ∈ [0, 2] the plaintext
vote and 𝑟

$← Z∗𝑝).
When a user votes in PRSONA, they update all of their current

votes. Their current votes are stored by the servers as a “vote row”
encrypted to a threshold of the servers, and rerandomized and
shuffled every epoch. Users know the current, but not the past,
pseudonyms associated with each vote in their current row. For
those users that a voter wishes to evaluate based on the most re-
cent evidence, they replace existing votes, and for all others, they
rerandomize existing votes.

To rerandomize a vote, a user chooses a random factor 𝑟 ′
$← Z∗𝑝 .

They then calculate𝑉 ′ = 𝑉 ·ℎ′𝑟 ′ , which, assuming𝑉 is well formed,
is equivalent to ℎ𝑣 · ℎ′𝑟+𝑟 ′ , for their previous vote 𝑣 for this votee,
and for some unknown 𝑟 ∈ Z𝑝 . The assumption that 𝑉 is well
formed is sound: in the case that a server is accepting a voter’s
submission, said server will verify the vote’s correctness via a ZKP
that the voter provides. In the case that a server is rerandomizing
a vote as part of epoch changeovers, servers are either trusted to
rerandomize votes correctly (honest-but-curious), or are required
to provide a ZKP of correct rerandomization (covert).

Once this has been done for all of a voter’s votes, the voter
generates a ZKP over all said votes to prove that each is either
a new encryption of a valid value (within the range of accepted
votes) or a rerandomization of the vote that was already there:∧𝑛

𝑘=1{(𝑥, 𝑣
′
𝑘
, 𝑟 ′) : 𝑋𝑡 = 𝔤𝑥𝑡 ∧ ((𝑉 ′ = ℎ

𝑣′
𝑘ℎ′𝑟

′ ∧ 𝑣 ′ ∈ [0, 2]) ∨ 𝑉 ′ =
𝑉ℎ′𝑟

′)}. Note that this ZKP is proportional in size and complexity
to the number of users in PRSONA.

The voter submits this proof and their (new and/or rerandomized)
votes to a randomly selected server. Upon verification of this proof,
this server forwards the votes and the proof to the other servers,
who verify the proof and update their data stores with the new
set of votes. As with user registration, a covert server that ignores
a user’s vote will be easily detected by said user, without loss of
privacy to the user, and said user can resubmit their votes to a new
server.

PRSONA: Private Reputation Supporting Ongoing Network Avatars WPES ’22, November 7, 2022, Los Angeles, CA, USA

𝑋𝑡 = 𝑋𝑡+1 =

1
2

3

Enc[4]
4

A B C

Figure 4. Following one user’s pseudonym through an epoch changeover. In step
1 (Build-up Phase), servers 𝐴, 𝐵, and 𝐶 add new factors to user 𝑋 ’s epoch 𝑡 fresh
pseudonym. In step 2 (Decryption Phase), servers calculate the user’s reputation. In
step 3 (Re-encryption Phase), servers encrypt the user’s reputation. In step 4 (Break-
down Phase), servers remove a previous changeover’s random factors to leave behind
the epoch 𝑡 + 1 fresh pseudonym.

5.3 Epoch Changeover
Between each pair of epochs, the servers must recalculate users’
reputation scores, generate fresh pseudonyms for each user, and
associate those reputations with the correct fresh pseudonym, with-
out allowing fresh pseudonyms to be linked between epochs. Note
that, while servers are computing the epoch changeover, certain
functionalities of PRSONA are limited. Users can still make ZKPs
that their reputation is above given thresholds, but new votes can-
not be submitted, nor can new users be added.

As discussed in Section 4.5, each server holds several pieces
of information. They track all of the fresh pseudonyms in a given
epoch, along with the epoch generator. Note that the servers cannot
know which fresh pseudonym in this epoch corresponds to which
fresh pseudonym from any previous or future epoch, so long as
any one server behaves honestly. The servers additionally track
the matrix of encrypted votes and the previous epoch’s calculated
scores for each user, both of which are encrypted to the shared
server BGN secret key (i.e., they are the output of BGNEncrypt𝐻 ()
and BGNEncrypt𝐺 (), respectively). Finally, the servers also hold a
list of the previous epoch’s calculated scores for each user, where
each encrypted score is encrypted to the user’s fresh pseudonym
(via EGEncrypt()).

In order to achieve PRSONA’s functionality, subject to its privacy
guarantees, the inter-epoch calculation proceeds in four rounds, as
depicted in Figure 4:

1. Build-up Phase: The servers calculate the next epoch’s
epoch generator, and iteratively raise each user’s previous
epoch fresh pseudonym to new factors, putting the pseudo-
nyms into a transitional state that cannot be linked to their
values in the previous or following epoch. Each server also
randomly shuffles the data.

2. Decryption Phase: The servers calculate the reputation
scores for the next epoch and collaboratively decrypt them.
These reputation scores will then be seen by the servers in
plaintext, associated only with the transitional pseudonyms.

3. Re-encryption Phase: The servers re-encrypt the plaintext
reputation scores into the output of BGNEncrypt𝐺 () (used
by the servers during the next Decryption Phase) and the
output of EGEncrypt() (used by votees in reputation proofs).

During this phase, the latter of these will be encrypted to the
transitional pseudonyms, to be altered in the Break-down
Phase such that they are correctly encrypted to the user’s
new fresh pseudonym. (This is necessary to avoid linking
fresh pseudonyms to users’ raw scores, which are observed
during the Decryption and Re-encryption Phases.)

4. Break-down Phase: The servers iteratively raise the tran-
sitional pseudonym (and part of their encrypted reputation
score) for each user to the inverse of the factors added dur-
ing the previous inter-epoch calculations, leaving only the
factors they used during this set of inter-epoch calculations.
Once this is done, the resulting fresh pseudonyms (and en-
crypted reputation scores) are ready for the new epoch. Each
server also randomly shuffles the data.

5.3.1 Build-up Phase. In the first phase, the servers “build up” on
top of users’ previous epoch fresh pseudonyms (we will call this
epoch 𝑡), in addition to building up a new fresh generator for the
next epoch (𝑡 + 1).

To do so, the servers begin with the current fresh pseudonyms
and 𝔤, the generator of the group𝔊 that was output by EGGroup-
GenKey(). Each server operates in turns; the order does not strictly
matter, but must be agreed upon ahead of time for purposes of syn-

chonization. Each server chooses a random epoch factor 𝔯𝑘,𝑡+1
$←

Z∗𝑞 . The epoch generator for the next epoch is the result of each
server iteratively applying (through exponentiation) their epoch
factor to 𝔤.

The server also applies its epoch factor to each of the fresh pseud-
onyms (or the output transitional pseudonyms from the previous
server, as appropriate). It then randomly shuffles the transitional
pseudonyms (along with every piece of data tagged by the pseud-
onyms, with the same random shuffle). In the honest-but-curious
setting, the server passes this shuffled data on to the next server. As
the honest-but-curious algorithm is dominated by its need to reran-
domize 𝑂 (𝑛2) elements of the vote matrix, and rerandomization
is an 𝑂 (1) operation, we expect the honest-but-curious setting to
have quadratic complexity. In the covert setting, server 𝑘 generates
a ZKP that it applied the same shuffle to all the data, and that the
exponentiations and rerandomizations were all consistent, then
passes the data and ZKP to all other servers, who verify the ZKP
before the next server begins their turn.

The intuition for this ZKP is as follows. Imagine that the list of
fresh pseudonyms is a vector. Next, imagine a permutation matrix
— a matrix whose elements are all exclusively 0 or 1, and for which
it is true that every row and every column sums to 1 — for which
the matrix-vector product with the input list of pseudonyms is
the list of pseudonyms in the desired shuffled order. In the ZKP, a
server commits to such a permutation matrix, then proves that the
output fresh pseudonyms are the result of raising each element of
the matrix-vector product of that permutation matrix and the input
fresh pseudonyms to a common value. Further, the server proves
the other reordered datasets are the result of homomorphically
adding encryptions of the value 0 to the matrix-vector product of
the same permutation matrix and the appropriate input data.

We show the notation for the ZKP in parts. First, we must prove
that we have a valid permutation matrix (L). Let us call each el-
ement of L ℓ𝑖, 𝑗 . We make a matrix of Pedersen commitments to

WPES ’22, November 7, 2022, Los Angeles, CA, USA Stan Gurtler and Ian Goldberg

this permutation matrix (B), whose elements are 𝐵𝑖, 𝑗 = 𝔤ℓ𝑖,𝑗 𝔥𝑠𝑖,𝑗 .

We choose these 𝑠𝑖, 𝑗 values such that
𝑛∑
𝑖=1

𝑠𝑖, 𝑗 = 0 mod 𝑞 for each

𝑗 and
𝑛∑
𝑗=1

𝑠𝑖, 𝑗 = 0 mod 𝑞 for each 𝑖 . We prove that each 𝐵𝑖, 𝑗 is a

commitment to 0 or 1: {(ℓ𝑖, 𝑗 , 𝑠𝑖, 𝑗) : 𝐵𝑖, 𝑗 = 𝔤ℓ𝑖,𝑗 𝔥𝑠𝑖,𝑗 ∧ ℓ𝑖, 𝑗 ∈ [0, 1]}.
With that, assuming that no server can know 𝑑 ∈ Z𝑞 such that

𝔤 = 𝔥𝑑 , a verifier can check that
𝑛∏
𝑖=1

𝐵𝑖, 𝑗
?
= 𝔤 for all 𝑗 and

𝑛∏
𝑗=1

𝐵𝑖, 𝑗
?
= 𝔤

for all 𝑖 . If this holds, each row and column of the matrix sums to 1.
Some stored data only needs to be rerandomized and reordered

by the permutation matrix. This applies to the vote matrix (V) and
to the server-encrypted reputation scores. In order to correctly per-
mute both the rows and the columns of V, we specifically calculate
L𝑇VL. This calculation is carried out on each row (or column) indi-
vidually, using the same process as any other input data vector we
shuffle and rerandomize. Suppose ®𝑎 = (𝐴1, . . . , 𝐴 𝑗 , . . . 𝐴𝑛) is such
a vector we want to reorder. (Recall that the elements of the vote
matrix and the server-encrypted reputation scores will be in𝐺 and
𝐻 , respectively). In addition to the Pedersen commitment permu-
tation matrix from before, we generate an intermediary matrix C,

whose elements are 𝐶𝑖, 𝑗 = 𝐴
ℓ𝑖,𝑗
𝑗
ℎ
′𝑠′𝑖,𝑗 , where 𝑠 ′

𝑖, 𝑗

$← Z∗𝑝 . With this in
place, we include the following ZKP part:

𝑛∧
𝑖=1

𝑛∧
𝑗=1
{(ℓ𝑖, 𝑗 , 𝑠𝑖, 𝑗 , 𝑠 ′𝑖, 𝑗) : 𝐵𝑖, 𝑗 = 𝔤ℓ𝑖,𝑗 𝔥𝑠𝑖,𝑗 ∧𝐶𝑖, 𝑗 = 𝐴

ℓ𝑖,𝑗
𝑗
ℎ
′𝑠′𝑖,𝑗 }

Similar to the permutation matrix before, the verifier then cal-

culates ®𝑐𝑖 = ⟨
𝑛∏
𝑗=1

𝐶𝑖, 𝑗 ⟩𝑖∈[1,𝑛] . As there is only one 1 in each row of

the permutation matrix, most of the 𝐴ℓ𝑖,𝑗
𝑗

terms drop away, and the

remaining ℎ′𝑠
′
𝑖,𝑗 terms rerandomize the element. The resulting 𝑐𝑖

values are the re-ordered and rerandomized vector we sought.
Note that the size and complexity of this ZKP scales quadratically

with the number of elements being reordered. This is true of all
the ZKP parts we describe, as they all involve transforming an 𝑛-
element vector into an 𝑛-by-𝑛 element matrix (i.e., to touch every
element in the resulting matrix, it is necessarily the case that there
are 𝑂 (𝑛2) operations). However, the overall size and complexity
of the ZKP for a correct shuffle is actually cubic — this is because
in order to reorder a vote matrix specifically, there are 𝑛 different
𝑛-element vectors that must be transformed into 𝑛-by-𝑛 element
matrices (that is, there are 𝑂 (𝑛2) operations per matrix, and 𝑛
matrices, resulting in an 𝑂 (𝑛3) complexity).

Some stored data needs to be reordered by the permutation ma-
trix while also applying the server’s epoch factor 𝔯𝑘,𝑡+1 to them,
without doing any form of rerandomization. This is true of the fresh
pseudonyms. As before, we will make use of the Pedersen com-
mitment permutation matrix. We also use two new intermediary
matrices, D (whose elements are 𝐷𝑖, 𝑗 = 𝐴

ℓ𝑖,𝑗 𝔯𝑘,𝑡+1
𝑗

𝔥
𝑠′𝑖,𝑗) and E (whose

elements are 𝐸𝑖, 𝑗 = 𝔤
𝑠′𝑖,𝑗). In this case, the 𝑠 ′

𝑖, 𝑗
s are chosen such

that
𝑛∑
𝑗=1

𝑠 ′
𝑖, 𝑗

= 0 mod 𝑞 for each 𝑖 . With this in place, we include the

following ZKP part:

𝑛∧
𝑖=1

𝑛∧
𝑗=1
{(𝔯𝑘,𝑡+1, ℓ𝑖, 𝑗 , 𝑠𝑖, 𝑗 , 𝑠 ′𝑖, 𝑗) :

𝐵𝑖, 𝑗 = 𝔤ℓ𝑖,𝑗 𝔥𝑠𝑖,𝑗 ∧ 𝐷𝑖, 𝑗 = 𝐴
ℓ𝑖,𝑗 𝔯𝑘,𝑡+1
𝑗

𝔥
𝑠′𝑖,𝑗 ∧ 𝐸𝑖, 𝑗 = 𝔤

𝑠′𝑖,𝑗 }

Again as before, the verifier then calculates 𝐷𝑖 =
𝑛∏
𝑗=1

𝐷𝑖, 𝑗 and

𝑛∏
𝑗=1

𝐸𝑖, 𝑗
?
= 𝔤0. Assuming the 𝐸𝑖, 𝑗 check passes (confirming that the

𝑠 ′
𝑖, 𝑗
s canceled out), then the𝐷𝑖s are the reordered fresh pseudonyms

with the 𝔯𝑘,𝑡+1 factor applied. The user-encrypted reputation scores
are not reordered during this phase, as they will be recalculated
and replaced in the next two phases.

For all of these ZKP parts, proof batching techniques [14] can be
used to make the proofs more efficient, at the expense of introduc-
ing a potential soundness error. Proof batching involves choosing
a batch parameter 𝜆, and the chance of error is typically some-
thing along the lines of 2−𝜆 . As such, 𝜆 = 50 would indicate that
a proof that is generated once per second would not be expected
to incorrectly verify for 224 years. In our implementation, we also
implement proof batching, and test with 𝜆 = 50; this choice is ap-
propriate for the usage expected with PRSONA in practical settings.

At the end of this process, the servers have collaboratively gen-
erated the epoch generator for epoch 𝑡 + 1, and a set of transitional
pseudonyms that are not linkable to either the fresh pseudonyms
for the previous or next epoch (we use the notation 𝑋I/II to refer
to such a pseudonym for user 𝑋 between Epochs I and II). In this
state, none of the users and none of the servers individually are
able to determine which of the transitional pseudonyms apply to
which user.

5.3.2 Decryption and Re-encryption Phases. The next two phases
are closely related to each other. Here, there is no difference be-
tween the covert setting and the honest-but-curious setting. Once
the transitional pseudonyms have been “built up”, the servers col-
laboratively calculate the next epoch’s reputation scores for each
user. Votes in the vote matrix are encrypted as elements in 𝐻 , and
associated with both the voter’s and votee’s transitional pseudo-
nyms. Reputation scores from Epoch 𝑡 are encrypted as elements in
𝐺 , and associated with the transitional pseudonym of the user they
apply to; let ®𝑧 be the vector form of these scores when in plaintext,
and ®𝑎 when in ciphertext. Each server has its own copy of this data.

First, as a setup step, servers independently compute (in en-
crypted form) the matrix-vector product of the vote matrix and
the reputation scores from Epoch 𝑡 by using BGNMultiply() and
BGNAdd() as appropriate (this step uses no secrets, so using fixed
𝑔1 and ℎ1 values to ensure that the servers calculate identical out-
put values is fine). Specifically, each element in the vote matrix
is multiplied by the reputation score of its voter, then added with
the other votes for the same votee, to achieve the weighting of our
reputation function. The resulting vector consists of elements of
𝐺𝑇 , in the same order as ®𝑧 (and therefore still associated with the
correct transitional pseudonyms).

Note that PRSONA reputation scores are limited to the range
[0, 2𝑛]. However, these output values can be in range [0, 4𝑛2] (the
maximum occurring when every voter has reputation score 2𝑛 and
gives a positive vote to the same votee). To resolve this, output
values are scaled according to the maximum score that was possible

PRSONA: Private Reputation Supporting Ongoing Network Avatars WPES ’22, November 7, 2022, Los Angeles, CA, USA

to achieve during the epoch. To do so, servers at this point also
independently homomorphically calculate the encryption of the
sum of all elements of ®𝑧 by multiplying the ciphertexts in®𝑎, then
squaring the result to calculate the encryption of𝑚 = 2

∑
𝑍𝑘 ∈®𝑧

𝑍𝑘 ,

the maximum possible score. Because this calculation involves no
multiplications, the resulting value is an element of 𝐺 , just as the
members of ®𝑎 are.

Next, the Decryption Phase begins. Servers confirm that they
hold the same values in the output vector and for the encryption
of𝑚, then collaboratively execute BGNDecrypt() on these values.
From there, each server has a plaintext version of the output vec-
tor, with each element tagged with the transitional pseudonym
of the user it applies to, and a plaintext version of the maximum
possible score. The servers thus learn the multiset of reputation
scores held by users each epoch. Servers then independently calcu-
late 𝑧′

𝑘
=

⌊
2𝑛𝑧𝑘
𝑚

⌋
, for 𝑧𝑘 the plaintext element of the output vector

corresponding to user 𝑘 . The resulting ®𝑧′ represents the plaintext
reputation scores scaled into the range [0, 2𝑛], as they will apply
to each user in the next epoch.

Once these scaled plaintext values have been calculated, servers
move forward to the Re-encryption Phase. In this phase, servers
encrypt the plaintext scores in twoways. First, they encrypt them as
elements of𝐺 usingBGNEncrypt𝐺 (), to serve as the weights in the
reputation function calculation during the next inter-epoch period.
As PRSONA does not prevent learning the multiset of reputation
scores, servers use fixed 𝑔1 in this encryption, so that each server
can obtain an identical copy of these newly encrypted values. If it
is desired to prevent users that do not collude with servers from
learning this multiset, the servers may instead agree on a random
𝑔1 (whether at the time or in advance). Second, servers encrypt the
scores as elements of𝔊2 using a variation of EGEncrypt().

Ordinarily, the output of EGEncrypt() is encrypted to a pseudo-
nym𝑋𝑘,𝑡 with form (𝑋𝑟

𝑘,𝑡
, 𝔤𝑟𝑡 𝔥

𝑧′
𝑘), for 𝑟 ∈ Z∗𝑞 some random blinding

factor and 𝑧′
𝑘
the scaled score of the user in plaintext. However, the

servers have not yet calculated the fresh pseudonyms 𝑋𝑡+1. For-
tunately, they did calculate 𝔤𝑡+1 during the Build-up Phase. With
this, the servers encrypt a score 𝑧𝑘 like so: (𝑋𝑟

𝑘,𝑡/𝑡+1, 𝔤
𝑟
𝑡+1𝔥

𝑧′
𝑘). Any

individual server can compute this encryption, but a majority of
servers must agree that it represents the correct score.

Users cannot normally decrypt these values, because 𝑋𝑘,𝑡/𝑡+1 ≠
𝔤
𝑥𝑘
𝑡+1. During the Break-down Phase, the servers will manipulate
these encrypted values to put them back into a form that users will
be able to correctly decrypt, while also rerandomizing the encryp-
tions with 𝑟 ′ blinding factors that the other servers do not know.
Due to this rerandomization aspect, these encryptions will not be
possible for other servers to decrypt when associated with users’
fresh pseudonyms, as long as any one server honestly rerandom-
ized the scores. As with the outputs of BGNEncrypt(), appropriate
values of 𝑟 can be agreed upon at the time or pre-emptively, so that
each server has an identical copy of the outputs of EGEncrypt().

5.3.3 Break-down Phase. In the final phase, the servers “break
down” transitional pseudonyms into the fresh pseudonyms for the
next epoch (along with the user-encrypted reputation scores, in the
same manner).

During Epoch 𝑡 , servers each chose a (random) epoch factor
𝔯𝑘,𝑡 to apply to 𝔤, in order to collaboratively construct 𝔤𝑡 . The
transitional pseudonyms are related to the fresh pseudonyms for
Epoch 𝑡 , as they still have those epoch factors from Epoch 𝑡 applied
to them. As in the Build-up Phase, each server operates in turns,
and again the order does not strictly matter, but must be agreed
upon ahead of time for purposes of synchronization. During server
𝑘’s turn, first, it calculates 𝔯−1

𝑘,𝑡
mod 𝑞. Then, 𝑘 applies this inverse

epoch factor to each of the transitional pseudonyms (or the output
transitional pseudonyms from the previous server, as appropriate).
As in the Build-up Phase, the server also randomly shuffles the
transitional pseudonyms (along with every piece of data tagged by
the pseudonyms, with the same random shuffle).

In the honest-but-curious setting, the server passes this shuffled
data on to the next server. As with the Build-up Phase, rerandomiz-
ing the vote matrix dominates the honest-but-curious Break-down
Phase algorithm, resulting in an expected quadratic computational
complexity. Across all phases, the greatest complexity any phase
faces in the honest-but-curious setting is a quadratic complexity,
and each phase executes independently. This leads us to conclude
that the honest-but-curious setting should expect quadratic com-
plexity for the epoch changeover calculations as a whole.

In the covert setting, server 𝑘 generates a ZKP that it applied
the same shuffle to all the data, and that the exponentiations and
rerandomizations were all consistent, then passes the data and
the ZKP to all other servers, who verify the ZKP before the next
server begins their turn. This ZKP is almost identical to that of the
Build-up Phase. Wherever the Build-up Phase refers to 𝔯𝑘,𝑡+1, it can
simply be replaced with 𝔯−1

𝑘,𝑡
mod 𝑞 without issue. The ZKP for the

Break-down Phase has one notable addition on top of the ZKP for
the Build-up Phase. During the Build-up Phase, user-encrypted rep-
utation scores were ignored, because they are recalculated during
the Decryption and Re-encryption Phases. During the Break-down
Phase, however, user-encrypted reputation scores cannot be ig-
nored. Their shuffle requires a slightly altered ZKP from the two
types of data that have ZKPs during the Build-up Phase; this ZKP
simultaneously rerandomizes shuffled data and applies a consistent
exponent to each element.

Recall that user-encrypted reputation scores are (usually) the out-
put of EGEncrypt() with form (𝑋𝑟

𝑡 , 𝔤
𝑟
𝑡 𝔥

𝑧), for 𝑋𝑡 the fresh pseudo-
nym of some user during Epoch 𝑡 , 𝑟 a random blinding factor, and 𝑧
the user’s reputation score. Recall also that the “user-encrypted rep-
utation scores” obtained during the Re-encryption Phase actually
have form (𝑋𝑟

𝑡/𝑡+1, 𝔤
𝑟
𝑡+1𝔥

𝑧), because servers did not have access to
the fresh pseudonyms for Epoch 𝑡 + 1 during the Re-encryption
Phase. As the ciphertext is a tuple, there are two different oper-
ations that need to be done on each piece of the tuple. The first
part, much like the fresh and transitional pseudonyms during the
Build-up Phase, need to have a factor applied to them in addition
to being reordered (specifically, 𝔯−1

𝑘,𝑡
mod 𝑞). The second part, much

like the vote matrix and server-encrypted reputation scores, needs
to be reordered and rerandomized — and importantly, the same
rerandomization needs to also be applied to the first part of the
tuple, so that the encrypted value can still be properly decrypted
after the shuffle operation.

WPES ’22, November 7, 2022, Los Angeles, CA, USA Stan Gurtler and Ian Goldberg

As with the ZKP parts defined during the Build-up Phase, for
this ZKP part we will make use of the Pedersen commitment per-
mutation matrix B. In this ZKP part, 𝐴′

𝑗
describes the first element

of the 𝑗-th tuple in the encrypted values arranged as a vector, and
𝐴′′
𝑗
describes the second element of said tuple. 𝑋𝑘,𝑡/𝑡+1 refers to

user 𝑘’s transitional pseudonym (or the appropriate output tran-
sitional pseudonym of the previous server). We make use of in-
termediate vectors E (whose elements are 𝐸𝑖, 𝑗 = 𝔤

𝑠′𝑖,𝑗), F (whose

elements are 𝐹𝑖, 𝑗 = 𝐴
′ℓ𝑖,𝑗 𝔯−1𝑘,𝑡

𝑗
𝑋
ℓ𝑖,𝑗 𝔯

−1
𝑘,𝑡

𝑠′𝑖,𝑗
𝑗,𝑡/𝑡+1 𝔥

𝑠′𝑖,𝑗), and H (whose elements

are 𝐻𝑖, 𝑗 = 𝐴
′′ℓ𝑖,𝑗
𝑗

𝔤
ℓ𝑖,𝑗𝑠

′
𝑖,𝑗

𝑡+1 𝔥
𝑠′𝑖,𝑗). As with the Build-up Phase, the 𝑠 ′

𝑖, 𝑗

values are chosen such that
𝑛∑
𝑗=1

𝑠 ′
𝑖, 𝑗

= 0 mod 𝑞 for each 𝑖 . With this

in place, we include the following ZKP part, which proves that
the output user-encrypted reputation scores are consistent with
rerandomizing and removing the server’s previous epoch factor
from the input user-encrypted reputation scores:

𝑛∧
𝑖=1

𝑛∧
𝑗=1
{(𝔯−1

𝑘,𝑡
, ℓ𝑖, 𝑗 , 𝑠𝑖, 𝑗 , 𝑠

′
𝑖, 𝑗) : 𝐵𝑖, 𝑗 = 𝔤ℓ𝑖,𝑗 𝔥𝑠𝑖,𝑗 ∧ 𝐸𝑖, 𝑗 = 𝔤

𝑠′𝑖,𝑗 ∧

𝐹𝑖, 𝑗 = 𝐴
′ℓ𝑖,𝑗 𝔯−1𝑘,𝑡

𝑗
𝑋
ℓ𝑖,𝑗 𝔯

−1
𝑘,𝑡

𝑠′𝑖,𝑗
𝑗,𝑡/𝑡+1 𝔥

𝑠′𝑖,𝑗 ∧ 𝐻𝑖, 𝑗 = 𝐴
′′ℓ𝑖,𝑗
𝑗

𝔤
ℓ𝑖,𝑗𝑠

′
𝑖,𝑗

𝑡+1 𝔥
𝑠′𝑖,𝑗 }

As was done in the Build-up Phase, the verifier then calculates
𝑛∏
𝑗=1

𝐸𝑖, 𝑗
?
= 𝔤0, ®𝑓𝑖 = ⟨

𝑛∏
𝑗=1

𝐹𝑖, 𝑗 ⟩𝑖 , and ®ℎ𝑖 = ⟨
𝑛∏
𝑗=1

𝐻𝑖, 𝑗 ⟩𝑖∈[1,𝑛] . In the ®𝑓𝑖

calculations, the ℎ𝑠
′
𝑖,𝑗 terms drop away as expected, all but one of

the 𝐴
ℓ𝑖,𝑗 𝔯

−1
𝑘,𝑡

𝑗
terms drop away, and the one 𝑋

ℓ𝑖,𝑗 𝔯
−1
𝑘,𝑡

𝑠′𝑖,𝑗
𝑗,𝑡/𝑡+1 term that does

not drop away rerandomizes the first part of the tuple appropriately.
In the ®ℎ𝑖 calculations, the ℎ𝑠

′
𝑖,𝑗 terms again drop away as expected,

all but one of the 𝐴′
𝑗
ℓ𝑖,𝑗

terms drop away, and the one 𝔤
ℓ𝑖,𝑗𝑠

′
𝑖,𝑗

𝑡+1 term
that does not drop away rerandomizes the second part of the tuple
(with the same random factor as was applied to the first part of
the tuple). The resulting ®𝑓𝑖 and ®ℎ𝑖 values are the re-ordered and
rerandomized elements of the ciphertexts.

Because the vote matrix portion of the ZKP still dominates in
the Break-down Phase, we expect the overall size and complexity
of this ZKP to be cubic. As each phase operates independently, this
leads us to conclude that we should expect cubic complexity for
the epoch changeover calculations as a whole in the covert setting.

6 EVALUATION
In this section, we discuss our implementation of PRSONA and
evaluate it on suitable benchmarks.

6.1 Implementation
We implemented a functional prototype of PRSONA, consisting of
approximately 11400 lines of novel C++ code. Our implementation
makes use of an open-source C++ library implementing prime-order
BGN from Herbert et al. [15], upon which we have made significant
extensions (totalling approximately 2700 lines of C++ code). That li-
brary in turn uses an open-source C library implementing various el-
liptic curve and pairing primitives from Naehrig et al. [21]. Our pro-
totype implements the complete design of PRSONA, including all
relevant zero-knowledge proofs. The source code of our prototype is
available at https://git-crysp.uwaterloo.ca/tmgurtler/PRSONA, and

the source code of the modifications we made to the BGN library is
available at https://git-crysp.uwaterloo.ca/tmgurtler/BGN2.

The prime-order BGN library that we use implements prime-
order BGN (as described in Section 3.2) over a Barreto-Naehrig
curve — the library specifically builds upon a previous implementa-
tion by Naehrig et al. [21]. We also implement ElGamal encryption
(as described in Section 3.1) over this same curve (note that BN
pairings are Type III, so this is secure).

In Section 5.3, we mention that proof batching techniques [14]
can be applied to the ZKPs used in our proofs of correct shuffles. Our
implementation includes such techniques. As mentioned before, our
benchmarks in this chapter that use proof batching are measured
with 𝜆 = 50 (for 𝜆 the negative log of the soundness error induced
by batching).

6.2 Evaluation
We deployed servers and clients on the CrySP RIPPLE Facility; each
individual machine had 1 TiB of RAM and 80 cores and was used for
multiple clients and servers. The maximum RAM usage for servers
in our largest experiments never exceeded 30GiB, and the clients’
cryptographic calculations use no more than 3MiB of RAM. In all
timing calculations we perform, the effect of bandwidth is small
(each machine is connected to the others through a 1Gbps network).
Timings accounting for lower bandwidth may be simulated via the
recorded data for how much bandwidth was used, but as will be
seen, CPU usage has a much more significant impact on the time
any operation takes than the time necessary to transmit the data
PRSONA requires during these operations.

Throughout our experiments, we benchmarked the system with
𝑛 = {5, 10, 15, 20, 25, 30, 40, 50} users connected. These benchmarks
were run as a proof of concept and to confirm our analysis of
PRSONA’s asymptotic behaviour; with the optimizations (the hy-
brid honest-but-curious and covert approach, as well as probabilistic
proofs) that will be discussed in Section 7, we expect that PRSONA
could reasonably support several hundred users. As a rough esti-
mate, using the hybrid approach, an epoch length of one day, and
requiring servers to prove a random 1% of their covert proofs, we
estimate PRSONA could support 600 users with no further optimiza-
tions. Our expected use case involves small, tight-knit communities.
Recent statistical re-analysis of Dunbar’s number gives its 95% con-
fidence interval upper bound at 520 [20]; as such, 600 users seems
to be an appropriate limit for PRSONA’s use case.

In our experiments, we benchmark three key operations of
PRSONA. We are concerned with making proofs that reputations
are above a threshold (done by clients), with making votes (done
by clients), and with the calculations involved in turning over to a
new epoch (done by servers).
Reputation Proofs (client side). As mentioned in Section 5.2.1,
the size and time needed to create reputation proofs is logarithmic
in the difference between the chosen threshold 𝜃 and 2𝑛. We find
that both generating and verifying a reputation proof takes a very
small amount of time (less than 0.025 s in all cases tested). Proof
sizes are very small as well (less than 3KiB in all cases we tested).
Scaling up beyond proof-of-concept cases, we estimate making a
reputation proof would take less than 0.04 s in the 600-user case,
with the size of a new reputation proof at approximately 5 KiB.

https://git-crysp.uwaterloo.ca/tmgurtler/PRSONA
https://git-crysp.uwaterloo.ca/tmgurtler/BGN2

PRSONA: Private Reputation Supporting Ongoing Network Avatars WPES ’22, November 7, 2022, Los Angeles, CA, USA

5 10 20 30 40 50
Number of clients

100

101

102

103

CP
U

tim
e

pe
r s

er
ve

r
to

 c
al

cu
la

te
 a

n
ep

oc
h

(s
)

Comparing CPU time for covert security
epoch calculations across workloads (in log-log)

Line of best fit with slope = 3
Workload: "all"
Workload: "half"
Workload: "none"

Figure 5. Comparing the CPU time required to perform epoch calculations with
covert security to a cubic curve. On a log-log graph, epoch calculation CPU time is
roughly a straight line with slope ≈ 3. A 2-server setup was used in this experiment.
Proof batching was used in this experiment, with 𝜆 = 50.

Even when scaling up, these operations are very reasonable for
users to engage with regularly as needed.
New Votes (client side). As mentioned in Section 5.2.2, the size
and time needed to create new rows of votes is linear in the number
of users in the system as a whole. We find that in our largest cases,
making new vote rows takes less than 1.0 s, and the sizes of their
proofs are less than 350KiB. Scaling up beyond proof-of-concept
cases, we estimate making a new vote row (once per epoch) would
take approximately 11 s in the 600-user case, with the size of a new
vote row proof at approximately 4MiB. Even as we expect users of
the system to have less powerful machines or less bandwidth than
servers, making new vote rows will be more or less unnoticeable
to the average user.
Epoch Calculations (server side). When benchmarking epoch
changeover calculations, we tested three workloads, correspond-
ing to differing numbers of voters voting in each epoch. In the
“none” workload, no clients vote during the epoch, then an epoch
changeover was calculated, then one reputation proof was made. In
the “half” workload, half the clients are randomly selected to vote
during the epoch, with the other two steps remaining the same. In
the “all” workload, all the clients vote during the epoch, and the
other two steps stayed the same. When comparing these workloads
under covert security (Figure 5), the proof batching techniques dis-
cussed in Section 5.3 were used, with batch soundness parameter
𝜆 = 50. Proof batching is not relevant in the honest-but-curious
setting (HbC) (Figure 6). We repeated each experiment 25 times.

As can be seen in Figures 5 and 6, epoch calculations in both
covert and honest-but-curious security had virtually no difference
in CPU time between workloads. All workload curves take the
same shape, with only very minor differences between them; for
most values of the number of clients observed, their 95% confidence
intervals overlap. We note that, as expected, the honest-but-curious
cases (Figure 6) have significant performance improvements over
the covert cases (Figure 5) in CPU time. These lower costs maymake
the system more attractive to deploy, at the cost of requiring more
trust in the central servers. Alternatively, in the hybrid approach
that will be discussed in Section 7, these represent lower online

5 10 20 30 40 50
Number of clients

100

101

102

103

CP
U

tim
e

pe
r s

er
ve

r
to

 c
al

cu
la

te
 a

n
ep

oc
h

(s
)

Comparing CPU time for HbC security
epoch calculations across workloads (in log-log)

Line of best fit with slope = 2
Workload: "all"
Workload: "half"
Workload: "none"

Figure 6. Comparing the CPU time required to perform epoch calculations with
honest-but-curious security to a quadratic curve. On a log-log graph, epoch calculation
CPU time is roughly a straight line with slope ≈ 2. A 2-server setup was used in this
experiment. Proof batching is not relevant in the honest-but-curious setting.

costs with no extra trust in the central servers. We estimate that
in a 300-user case, servers could execute a full covert proof in one
week, and in a 600-user case, servers could execute a random 1%
of the covert proof in one day. The proofs themselves could also
be invoked only probabilistically (on average say once per month
for the full 300-user proof, and once per week for the probabilistic
600-user proof).

In Figures 5 and 6, we compare the graphs with a simple cubic
curve (a straight line with slope 3 on the log-log plot) in the covert
setting, and a simple quadratic curve (slope 2) in the honest-but-
curious setting. In the covert setting, the graph is roughly a straight
line with slope ≈ 3; in the honest-but-curious setting, the graph is
roughly a straight line with slope ≈ 2. This indicates, as expected
in Section 5.3, that the epoch calculation has approximately cu-
bic complexity in the covert setting, and approximately quadratic
complexity in the honest-but-curious setting.

We also consider cases with different number of servers, as in
Figures 7 and 8. In Figure 7, we observe that the per-server CPU
time to calculate an epoch changeover has some small additional
overhead among greater numbers of clients, but this overhead is
barely noticeable with smaller numbers of clients. In Figure 8, we
similarly observe little discernable difference between different
number of servers in per-server bandwidth. Comparing both CPU
usage and server-to-server outgoing bandwidth to a cubic curve on
a log-log graph, as in previous cases in the covert setting, graphs
are roughly straight lines with slope ≈ 3, indicating approximately
cubic complexity. Importantly, all lines have approximately the
same slope; this indicates that the relative overhead increases with
the same complexity. Together, this tells us that distributing trust
across more entities does not require exorbitant costs.

7 DISCUSSION
Conducting the epoch changeover calculations in the covert setting
is computationally demanding. The bandwidth usage we require of
servers and the times involved in calculating epoch changeovers
can be relatively high. As mentioned elsewhere, we target PRSONA
for usage in smaller, tight-knit communities, where we expect group

WPES ’22, November 7, 2022, Los Angeles, CA, USA Stan Gurtler and Ian Goldberg

5 10 20 30 40 50
Number of clients

100

101

102

103

CP
U

tim
e

pe
r s

er
ve

rs
to

 c
al

cu
la

te
 a

n
ep

oc
h

(s
)

Comparing CPU time for covert security
epoch calculations across numbers of servers (in log-log)

Line of best fit with slope = 3
2 servers
3 servers
4 servers

Figure 7. Comparing the covert security epoch calculation CPU time of different
numbers of servers to a simple cubic curve. On a log-log graph, epoch calculation
CPU time is roughly a straight line with slope ≈ 3. Datapoints represent a mix of
workloads. Proof batching was used in this experiment, with 𝜆 = 50.

sizes to not be exceptionally large. For the largest of our test cases,
PRSONA epoch changes do take significant amounts of time in
the covert setting (several hours of total CPU time). This is still
fairly unoptimized — there are a considerable number of matrix
operations that could be parallelized, for example. On the other
hand, in the honest-but-curious setting, epoch changes take only a
few minutes of total CPU time.

Though we have considered the honest-but-curious setting and
the covert setting separately to this point, we note that there is a
way to combine the two modes for epoch calculations. If a server
conducts their shuffle in the honest-but-curious setting, but holds on
to the random shuffle orderings they used in the Build-up and Break-
down Phases, as well as the blinding factors used to rerandomize
elements, they would be able to retroactively produce the proof
they would have needed for the covert setting. Thus, servers can
conduct the shuffle using the honest-but-curious setting in real
time, preventing the system from being blocked for long periods of
time. Afterwards, they can retroactively produce the proofs of the
covert setting, and verify them amongst each other, to confirm that
all servers carried out their shuffle correctly. Because a server who
did not conform to the protocol would be eventually incriminated,
a covert server would not be able to act maliciously in this case. We
also consider probabilistic proofs of two forms. First, we consider
cases where servers perform all the quadratic portions and a (jointly
selected by all servers) random fraction of the cubic portions of
the covert proof. In particular, the 600-user case we discuss in
Section 6.2 performs this probabilistic proof with a random 1% of
the cubic proofs. Second, a proof may be asked for probabilistically;
that is, it may be asked for randomly with some parameterized
probability. An implementer may choose to set how frequently they
desire servers to actually produce their covert setting proofs. For
both, a covert server would still be prevented from cheating, because
of the non-negligible probability of their proof being required. Note
that, under these conditions, a malicious server would not have
been so prevented.

With this hybrid approach, an implementer gains security against
a covert adversarywhile only requiring the online cost of the honest-
but-curious setting. Though there is still an offline cost in line with

5 10 20 30 40 50
Number of clients

10−1

100

101

102

103

Se
rv

er
-to

-s
er

ve
r b

an
dw

id
th

 p
er

 se
rv

er
us

ed
 to

 c
al

cu
la

te
 a

n
ep

oc
h

(M
B)

Comparing bandwidth for covert security
epoch calculations across numbers of servers (in log-log)

Line of best fit with slope = 3
2 servers
3 servers
4 servers

Figure 8. Comparing the covert security epoch calculation bandwidth of different
numbers of servers to a simple cubic curve. On a log-log graph, epoch calculation
bandwidth is roughly a straight line with slope ≈ 3. Datapoints represent a mix of
workloads. Proof batching was used in this experiment, with 𝜆 = 50.

the non-hybridized covert setting, the system would not block for
long periods of time, meaning that users would be unable to vote on
each other for only a few minutes during each epoch change. If the
epoch is set to change every day, or every other day, users would
receive the benefits of fresh pseudonyms on a timescale appropri-
ate for the speed of forum conversations, and the system would
be able to support a reasonable number of users. Given what we
have observed from these benchmarks, we conclude that PRSONA
is appropriate for use in such settings.

8 CONCLUSION
Naturally, there remains room for improvement in the design of
reputation systems. Our approach focuses on smaller communities,
but aspects of our design can still be applied to larger contexts. In
particular, larger contexts do not often employ Reputation-Usage
Unlinkability, as PRSONA does. The ability for users to use reputa-
tion without linking themselves can be very valuable, regardless of
the size of the userbase, and future work exploring this opportunity
could be fruitful.

PRSONA itself is designed to assist tight-knit communities in
empowering their members to connect with one another with the
freedom and safety of privacy and anonymity, while balancing
against the risk of bad actors abusing those privileges. PRSONA im-
plements its guarantees with straightforward cryptographic tools,
and its experimental performance supports its viability for its tar-
get audience. PRSONA and similar systems can help enable more
human-scale social media, supporting people to connect and grow.

ACKNOWLEDGMENTS
We thank NSERC (CRDPJ-534381) and the Royal Bank of Canada
for supporting this work. This research was undertaken, in part,
thanks to funding from the Canada Research Chairs program. This
work benefited from the use of the CrySP RIPPLE Facility at the
University of Waterloo.

PRSONA: Private Reputation Supporting Ongoing Network Avatars WPES ’22, November 7, 2022, Los Angeles, CA, USA

REFERENCES
[1] Sharad Agarwal, Travis Dawson, and Christos Tryfonas. DDoS mitigation via

regional cleaning centers. Technical report, Sprint ATL, January 2004.
[2] Carlos Aguilar Melchor, Boussad Ait-Salem, and Philippe Gaborit. A collusion-

resistant distributed scalar product protocol with application to privacy-
preserving computation of trust. In 2009 Eighth IEEE International Symposium on
Network Computing and Applications, pages 140–147, July 2009.

[3] Jay Allen. The invasion boards that set out to ruin lives. https://boingboing.net/
2015/01/19/invasion-boards-set-out-to-rui.html, January 2015.

[4] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Ef-
ficient protocols for realistic adversaries. In Salil P. Vadhan, editor, Theory of
Cryptography, pages 137–156, Berlin, Heidelberg, 2007. Springer Berlin Heidel-
berg.

[5] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ci-
phertexts. In Joe Kilian, editor, Theory of Cryptography, pages 325–341, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[6] Jan Camenisch and Markus Stadler. Efficient Group Signature Schemes for Large
Groups. In CRYPTO 1997, pages 410–424, 1997.

[7] CBS News. Facebook whistleblower Frances Haugen testifies before Senate com-
mittee | full video. https://www.youtube.com/watch?v=juZEkeTjTRY, October
2021.

[8] Tassos Dimitriou. Decentralized reputation. In Proceedings of the Eleventh ACM
Conference on Data and Application Security and Privacy, CODASPY ’21, pages
119–130, New York, NY, USA, 2021. Association for Computing Machinery.

[9] Robin Ian MacDonald Dunbar. Neocortex size as a constraint on group size in
primates. Journal of Human Evolution, 22(6):469–493, 1992.

[10] Taher Elgamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–472,
1985.

[11] David Mandell Freeman. Converting pairing-based cryptosystems from
composite-order groups to prime-order groups. In Henri Gilbert, editor, Ad-
vances in Cryptology — EUROCRYPT 2010, pages 44–61, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[12] Stan Gurtler and Ian Goldberg. SoK: Privacy-preserving reputation systems.
Proceedings on Privacy Enhancing Technologies, 2021(1):107–127, 2021.

[13] Sufian Hameed and Hassan Ahmed Khan. Leveraging SDN for collaborative
DDoS mitigation. In 2017 International Conference on Networked Systems (NetSys),
pages 1–6, 2017.

[14] Ryan Henry and Ian Goldberg. Batch proofs of partial knowledge. In Michael
Jacobson, Michael Locasto, PaymanMohassel, and Reihaneh Safavi-Naini, editors,
Applied Cryptography and Network Security, pages 502–517, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[15] Vincent Herbert, Bhaskar Biswas, and Caroline Fontaine. Design and implemen-
tation of low-depth pairing-based homomorphic encryption scheme. Journal of
Cryptographic Engineering, 9(2):185–201, June 2019.

[16] Aapo Kalliola, Kiryong Lee, Heejo Lee, and Tuomas Aura. Flooding DDoS
mitigation and traffic management with software defined networking. In 2015
IEEE 4th International Conference on Cloud Networking (CloudNet), pages 248–254,
2015.

[17] Karen Hao. The Facebook whistleblower says its algorithms are dangerous.
Here’s why. https://www.technologyreview.com/2021/10/05/1036519/facebook-
whistleblower-frances-haugen-algorithms/, October 2021.

[18] Soon Hin Khor and Akihiro Nakao. DaaS: DDoS mitigation-as-a-service. In
2011 IEEE/IPSJ International Symposium on Applications and the Internet, pages
160–171, 2011.

[19] Vishnu Teja Kilari, Ruozhou Yu, Satyajayant Misra, and Guoliang Xue. EARS:
Enabling private feedback updates in anonymous reputation systems. In 2020
IEEE Conference on Communications and Network Security (CNS), pages 1–9, 2020.

[20] Patrick Lindenfors, Andreas Wartel, and Johan Lind. ‘Dunbar’s number’ decon-
structed. Biology Letters, 17(5):1–4, April 2021.

[21] Michael Naehrig, Ruben Niederhagen, and Peter Schwabe. New software speed
records for cryptographic pairings. In Proceedings of the First International Con-
ference on Progress in Cryptology: Cryptology and Information Security in Latin
America, LATINCRYPT’10, pages 109–123, Berlin, Heidelberg, 2010. Springer-
Verlag.

[22] Arvind Narayanan, Hristo S. Paskov, Neil Zhenqiang Gong, John Bethencourt,
Emil Stefanov, Eui Chul Richard Shin, and Dawn Xiaodong Song. On the feasibil-
ity of internet-scale author identification. 2012 IEEE Symposium on Security and
Privacy, pages 300–314, 2012.

[23] Elan Pavlov, Jeffrey S. Rosenschein, and Zvi Topol. Supporting privacy in de-
centralized additive reputation systems. In Christian Jensen, Stefan Poslad, and
Theo Dimitrakos, editors, Trust Management, pages 108–119, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[24] Margaret Pless. Kiwi Farms, the web’s biggest community of stalk-
ers. https://nymag.com/intelligencer/2016/07/kiwi-farms-the-webs-biggest-
community-of-stalkers.html, July 2016.

[25] John M Pollard. Monte Carlo methods for index computation (mod p). Mathe-
matics of Computation, 32(143):918–924, 1978.

[26] Rishikesh Sahay, Gregory Blanc, Zonghua Zhang, and Hervé Debar. Towards
autonomic DDoS mitigation using software defined networking. In SENT 2015:
NDSS Workshop on Security of Emerging Networking Technologies, San Diego, Ca,
United States, February 2015. Internet Society.

[27] Rishikesh Sahay, Gregory Blanc, Zonghua Zhang, and Hervé Debar. ArOMA:
An SDN based autonomic DDoS mitigation framework. Computers & Security,
70:482–499, 2017.

[28] Kyle Soska, Albert Kwon, Nicolas Christin, and Srinivas Devadas. Beaver: A
decentralized anonymous marketplace with secure reputation. Cryptology ePrint
Archive, Report 2016/464, 2016. https://eprint.iacr.org/2016/464.

[29] Adam Steinbaugh. Kevin Bollaert sentenced to 18 years over revenge porn
site “You Got Posted”. http://adamsteinbaugh.com/2015/04/03/kevin-bollaert-
sentenced-to-years-over-revenge-porn-site-you-got-posted/, April 2015.

[30] Jonathan Wells. Tyler Oakley: How the internet revolutionised LGBT
life. https://www.telegraph.co.uk/men/thinking-man/tyler-oakley-how-the-
internet-revolutionised-lgbt-life/, November 2015.

[31] Danfeng Yao, Roberto Tamassia, and Seth Proctor. Private distributed scalar
product protocol with application to privacy-preserving computation of trust. In
Sandro Etalle and Stephen Marsh, editors, Trust Management, pages 1–16, Boston,
MA, 2007. Springer US.

[32] Ennan Zhai, David Isaac Wolinsky, Ruichuan Chen, Ewa Syta, Chao Teng, and
Bryan Ford. AnonRep: Towards tracking-resistant anonymous reputation. In
13th USENIX Symposium on Networked Systems Design and Implementation (NSDI
16), pages 583–596. USENIX Association, March 2016.

[33] Mingwu Zhang, Yong Xia, Ou Yuan, and Kirill Morozov. Privacy-friendly
weighted-reputation aggregation protocols against malicious adversaries in cloud
services. International Journal of Communication Systems, 29(12):1863–1872, 2016.

[34] Luying Zhou, Huaqun Guo, and Gelei Deng. A fog computing based approach to
DDoS mitigation in IIoT systems. Computers & Security, 85:51–62, 2019.

A FREEMAN’S PRIME-ORDER BGN
The prime-order BGN construction we use in PRSONA was first
suggested by Freeman [11]. First, we quote Freeman’s definition of
a bilinear group generator (Freeman’s Definition 2.1 [11, p. 48]):
• A bilinear group generator is an algorithm G that takes as
input a security parameter 𝜆 and outputs a description of
five abelian groups 𝐺 , 𝐺1, 𝐻 , 𝐻1, and 𝐺𝑇 , with 𝐺1 ⊂ 𝐺 and
𝐻1 ⊂ 𝐻 . We assume that this description permits efficient
(i.e., polynomial time in 𝜆) group operations and random
sampling in each group. The algorithm also outputs an effi-
ciently computable map (or “pairing”) 𝑒 : 𝐺 × 𝐻 → 𝐺𝑇 that
is
– Bilinear: 𝑒 (𝑔1𝑔2, ℎ1ℎ2) = 𝑒 (𝑔1, ℎ1)𝑒 (𝑔1, ℎ2)
𝑒 (𝑔2, ℎ1)𝑒 (𝑔2, ℎ2) for all 𝑔1, 𝑔2 ∈ 𝐺 and ℎ1, ℎ2 ∈ 𝐻 ; and

– Nondegenerate: for any 𝑔 ∈ 𝐺 , if 𝑒 (𝑔, ℎ) = 1 for all ℎ ∈ 𝐻 ,
then 𝑔 = 1 (and similarly with 𝐺 , 𝐻 reversed).

Note that, in the above definition, 𝐺 and 𝐻 are not assumed to be
prime order (and in fact, they could not be, as described). This will
be addressed shortly.

Next, we quote Freeman’s definition of a projecting bilinear
group generator (Freeman’s Definition 3.1 [11, p. 52]):
• Let G be a bilinear group generator (Def. 2.1). We say G is
projecting if it also outputs a group𝐺 ′

𝑇
⊂ 𝐺𝑇 and three group

homomorphisms 𝜋1, 𝜋2, 𝜋𝑇 mapping𝐺 ,𝐻 ,𝐺𝑇 to themselves,
respectively, such that
1. 𝐺1, 𝐻1, 𝐺 ′𝑇 are contained in the kernels of 𝜋1, 𝜋2, 𝜋𝑇 , re-

spectively, and
2. 𝑒 (𝜋1 (𝑔), 𝜋2 (ℎ)) = 𝜋𝑇 (𝑒 (𝑔, ℎ)) for all 𝑔 ∈ 𝐺 , ℎ ∈ 𝐻 .

The original BGN cryptosystem [5] formed the hidden subgroups
𝐺1 ⊂ 𝐺 and 𝐻1 ⊂ 𝐻 by having 𝐺 = 𝐻 be an elliptic curve group
with a symmetric pairing, and whose order is an RSA number 𝑁 =

𝑝1𝑝2, and 𝐺1 = 𝐻1 are the order-𝑝1 subgroups. (The factorization

https://boingboing.net/2015/01/19/invasion-boards-set-out-to-rui.html
https://boingboing.net/2015/01/19/invasion-boards-set-out-to-rui.html
https://www.youtube.com/watch?v=juZEkeTjTRY
https://www.technologyreview.com/2021/10/05/1036519/facebook-whistleblower-frances-haugen-algorithms/
https://www.technologyreview.com/2021/10/05/1036519/facebook-whistleblower-frances-haugen-algorithms/
https://nymag.com/intelligencer/2016/07/kiwi-farms-the-webs-biggest-community-of-stalkers.html
https://nymag.com/intelligencer/2016/07/kiwi-farms-the-webs-biggest-community-of-stalkers.html
https://eprint.iacr.org/2016/464
http://adamsteinbaugh.com/2015/04/03/kevin-bollaert-sentenced-to-years-over-revenge-porn-site-you-got-posted/
http://adamsteinbaugh.com/2015/04/03/kevin-bollaert-sentenced-to-years-over-revenge-porn-site-you-got-posted/
https://www.telegraph.co.uk/men/thinking-man/tyler-oakley-how-the-internet-revolutionised-lgbt-life/
https://www.telegraph.co.uk/men/thinking-man/tyler-oakley-how-the-internet-revolutionised-lgbt-life/

WPES ’22, November 7, 2022, Los Angeles, CA, USA Stan Gurtler and Ian Goldberg

of 𝑁 is part of the private key of the scheme.) The projections
𝜋1, 𝜋2, and 𝜋𝑇 are then exponentiations by 𝑝1. Unfortunately, this
requires the order of the group to be an RSA-sized integer (meaning
thousands of bits for 128-bit security), which makes ciphertexts
large and slow to process. Freeman’s adaptation instead uses a
standard prime-order asymmetric pairing setup, as can be seen in
Freeman’s Example 3.3 [11, p. 53]:
• Let P be a prime-order bilinear group generator. Define GP
to be a bilinear group generator that on input 𝜆 does the
following:

1. Let (𝑝,G1,G2,G𝑇 , 𝑒)
$← P(1𝜆), and let 𝐺 = G21, 𝐻 = G22,

𝐺𝑇 = G4
𝑇
.

2. Choose generators 𝑔
$← G1, ℎ

$← G2, and let 𝛾 = 𝑒 (𝑔, ℎ).
3. Choose random 𝑎1, 𝑏1, 𝑐1, 𝑑1, 𝑎2, 𝑏2, 𝑐2, 𝑑2

$← F𝑝 such that
𝑎1𝑑1 − 𝑏1𝑐1 = 𝑎2𝑑2 − 𝑏2𝑐2 = 1.

4. Let 𝐺1 be the subgroup of𝐺 generated by 𝑔′ = (𝑔𝑎1 , 𝑔𝑏1),
let 𝐻1 be the subgroup of 𝐻 generated by ℎ′ = (ℎ𝑎2 , ℎ𝑏2),
and let 𝐺 ′

𝑇
be the subgroup of 𝐺𝑇 generated by

{𝛾 (𝑎1𝑎2,𝑎1𝑏2,𝑏1𝑎2,𝑏1𝑏2) , 𝛾 (𝑎1𝑐2,𝑎1𝑑2,𝑏1𝑐2,𝑏1𝑑2) ,

𝛾 (𝑐1𝑎2,𝑑1𝑏2,𝑐1𝑎2,𝑑1𝑏2) }.
5. Define 𝑒 : 𝐺 × 𝐻 → 𝐺𝑇 by

𝑒 ((𝑔1, 𝑔2), (ℎ1, ℎ2)) := (𝑒 (𝑔1, ℎ1), 𝑒 (𝑔1, ℎ2),
𝑒 (𝑔2, ℎ1), 𝑒 (𝑔2, ℎ2)).

6. Let 𝐴 = (−𝑏1𝑐1 −𝑏1𝑑1
𝑎1𝑐1 𝑎1𝑑1

), 𝐵 = (−𝑏2𝑐2 −𝑏2𝑑2
𝑎2𝑐2 𝑎2𝑑2

), and define

𝜋1 ((𝑔1, 𝑔2)) :=

(𝑔1, 𝑔2)𝐴 = (𝑔−𝑏1𝑐11 𝑔
𝑎1𝑐1
2 , 𝑔

−𝑏1𝑑1
1 𝑔

𝑎1𝑑1
2)

𝜋2 ((ℎ1, ℎ2)) :=

(ℎ1, ℎ2)𝐵 = (ℎ−𝑏2𝑐21 ℎ
𝑎2𝑐2
2 , ℎ

−𝑏2𝑑2
1 ℎ

𝑎2𝑑2
2)

𝜋𝑇 ((𝛾1, 𝛾2, 𝛾3, 𝛾4)) := (𝛾1, 𝛾2, 𝛾3, 𝛾4)𝐴⊗𝐵

7. Output the tuple (𝐺,𝐺1, 𝐻, 𝐻1,𝐺𝑇 ,𝐺
′
𝑇
, 𝑒, 𝜋1, 𝜋2, 𝜋𝑇).

Due to the prime-order assymetric pairing setup described above,
the ciphertexts in use are smaller and faster to operate on, while
still admitting depth-1 multiplication, as can be seen in Freeman’s
full construction (from Freeman’s Section 5 [11, p. 57]):
• KeyGen(1𝜆): Let G be a projecting bilinear group generator
(Definition 3.1). Compute (𝐺,𝐺1, 𝐻, 𝐻1,𝐺𝑇 ,𝐺

′
𝑇
, 𝑒, 𝜋1, 𝜋2, 𝜋𝑇)

← G(1𝜆). Choose 𝑔 $← 𝐺,ℎ
$← 𝐻 , and output the public

key 𝑃𝐾 = (𝐺,𝐺1, 𝐻, 𝐻1,𝐺𝑇 , 𝑒, 𝑔, ℎ) and the secret key 𝑆𝐾 =

(𝜋1, 𝜋2, 𝜋𝑇).
• Encrypt(𝑃𝐾,𝑚): Choose 𝑔1

$← 𝐺1 and ℎ1
$← 𝐻1. (Recall

that the output of G allows random sampling from 𝐺1 and
𝐻1.) Output the ciphertext (𝐶𝐴,𝐶𝐵) = (𝑔𝑚 · 𝑔1, ℎ𝑚 · ℎ1) ∈
𝐺 × 𝐻 .
• Multiply(𝑃𝐾,𝐶𝐴,𝐶𝐵): This algorithm takes as inputs two

ciphertexts 𝐶𝐴 ∈ 𝐺 and 𝐶𝐵 ∈ 𝐻 . Choose 𝑔1
$← 𝐺1 and

ℎ1
$← 𝐻1, and output𝐶 = 𝑒 (𝐶𝐴,𝐶𝐵) · 𝑒 (𝑔, ℎ1) · 𝑒 (𝑔1, ℎ) ∈ 𝐺𝑇 .

• Add(𝑃𝐾,𝐶,𝐶 ′): This algorithm takes as input two cipher-

texts 𝐶,𝐶 ′ in one of 𝐺 , 𝐻 , or 𝐺𝑇 . Choose 𝑔1
$← 𝐺1 and

ℎ1
$← 𝐻1, and do the following:

1. If 𝐶,𝐶 ′ ∈ 𝐺 , output 𝐶 ·𝐶 ′ · 𝑔1 ∈ 𝐺 .
2. If 𝐶,𝐶 ′ ∈ 𝐻 , output 𝐶 ·𝐶 ′ · 𝑔2 ∈ 𝐻 .
3. If 𝐶,𝐶 ′ ∈ 𝐺𝑇 , output 𝐶 ·𝐶 ′ · 𝑒 (𝑔, ℎ1) · 𝑒 (𝑔1, ℎ) ∈ 𝐺𝑇 .
• Decrypt(𝑆𝐾,𝐶): The input ciphertext is an element of𝐺 , 𝐻 ,
or 𝐺𝑇 .
1. If 𝐶 ∈ 𝐺 , output𝑚 ← log𝜋1 (𝑔) (𝜋1 (𝐶)).
2. If 𝐶 ∈ 𝐻 , output𝑚 ← log𝜋2 (ℎ) (𝜋2 (𝐶)).
3. If 𝐶 ∈ 𝐺𝑇 , output𝑚 ← log𝜋𝑇 (𝑒 (𝑔,ℎ) (𝜋𝑇 (𝐶)).

	Abstract
	1 Introduction
	2 Related Work
	3 Cryptographic Tools
	3.1 ElGamal
	3.2 Prime-order BGN

	4 Overview
	4.1 Architecture
	4.2 Threat Model
	4.3 Security Goals
	4.4 Reputation Function
	4.5 Data Types

	5 Design
	5.1 User Registration
	5.2 User Participation
	5.3 Epoch Changeover

	6 Evaluation
	6.1 Implementation
	6.2 Evaluation

	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	A Freeman's Prime-order BGN

