
Red button and yellow button:
usable security for lost security tokens

(Position paper)

Ian Goldberg1?, Graeme Jenkinson2, David Llewellyn-Jones2, Frank Stajano2

1 University of Waterloo, Canada
2 University of Cambridge, United Kingdom

Abstract. Currently, losing a security token places the user in a dilemma:
reporting the loss as soon as it is discovered involves a significant bur-
den which is usually overkill in the common case that the token is later
found behind a sofa. Not reporting the loss, on the other hand, puts the
security of the protected account at risk and potentially leaves the user
liable.
We propose a simple architectural solution with wide applicability that
allows the user to reap the security benefit of reporting the loss early,
but without paying the corresponding usability penalty if the event was
later discovered to be a false alarm.

1 Introduction

Imagine this scenario. I go abroad on a trip. I get back and, on attempting to do
some online banking, I can no longer find that all-important physical token that
lets me log in. I know I brought it with me abroad, and I’m pretty sure I was
always very careful with it, but now I can’t find it. What should I do? I could, of
course, report the loss to the bank, but then I’ll have to go through the security
rigmarole with the call centre operator (after I get through the automated voice
menus and more than my Recommended Monthly Allowance of muzak), answer
long-forgotten “secret questions” to prove that I am me, jump through various
hoops to have them send a new device in the post to my registered home address,
possibly pay an additional insurance premium for having lost a security token. . .
all the while thinking that, thanks to Murphy’s law, shortly after the request for
a new token has been accepted I will find the old one in a hidden pocket of my
suitcase (not that I didn’t already check, of course).

So instead I don’t report the loss, hoping that sooner or later I’ll find the lost
token at home, which on the face of it is by far the most likely outcome. But
I’m feeling slightly uneasy, imagining that maybe some foreign crooks found it
and are hacking into my current account as we speak.

This example shows how the security procedures currently in use to deal
with lost security tokens give me a rather powerful disincentive to report the
? On sabbatical at the University of Cambridge Computer Laboratory while working
on this topic.

Authors’ preprint of 2016-06-13.
Final version to appear in Proceedings of Security Protocols Workshop 2016, Springer LNCS.



loss immediately. If I still have any hope that I might find the token later, I
might save myself a lot of hassle by pretending I never lost it and meanwhile
continuing to look for it. Note that we take the term “security token” in its most
general sense, to encompass not only calculator-like login devices but also credit
cards and so forth.

The research question we address is:

can we devise a better procedure that might reconcile the two conflicting
goals of the token user?

. . . namely not wanting to be hassled unnecessarily in the relatively common
case that the lost token will be found again (= “I’d rather not report the loss, at
least yet”), and not wanting to end up in trouble in the rare but not impossible
occurrence that the token was actually stolen and misused (= “I’d rather report
the loss immediately”).

To be more precise, whether the token user ends up in trouble following
the loss of the token and its misuse by criminals depends on the exact terms
and conditions that regulate the agreement between the token user and the
token issuer. In the banking case it is common for the liability of the user to
be limited so long as the loss was promptly reported through official channels
(e.g., declaration to the police), but this may vary by jurisdiction. In any case,
whatever the arrangements, if value is taken out of the system by crooks who
access the account without authorization, the legitimate actors in the system are
going to incur a loss, however distributed, and it is reasonable to assume that,
to avoid moral hazard (“I don’t pay for it so I don’t give a damn”), the bank
will pass on at least some of the liability to the user if the user did not report
the loss. So we assume that the user has some incentive not to leave the loss
unreported.

From another viewpoint, one might observe that some banking tokens are
protected by a PIN and allow only three attempts before locking up, and there-
fore that the user should not care about the possibility of misuse of a lost or
stolen token unless the adversary is assumed to be able to overcome such pro-
tections. Not all tokens offer such protection, though; and, even for those that
do, the probability of guessing a human-chosen PIN in three tries is significantly
higher than a naïve calculation might suggest, because human-chosen PINs are
far from uniformly distributed [1]. Therefore, by the “moral hazard” argument
above, in our general discussion it still makes sense to assume that the user
should have some incentive to report the loss of a token.

On a related note, we observe that there is a wide spectrum of possible
strengths of the hardware tamper resistance mechanisms offered by security to-
kens, from non-existent through smartcard-grade to sealed and protected cells
enclosing processor, memory and battery, and beyond. And, orthogonally, there
is a wide spectrum of possible consequences for the loss of the token, from negli-
gible to extremely serious. It is reasonable to expect that the appropriate coun-
termeasure will depend on the threat scenario and that there will be a correlation
between the two variables. It seems unlikely that a single solution will suit every
possible case: for any given hardware implementation of a security token, one

2



will always be able to construct horrendous threats for which the countermea-
sures will be insufficient and trivial threats for which the countermeasures will
be overkill and too expensive. Any solution will only be optimal for a subset of
the possible cases. Any general solution will be a trade off. This is basic risk
management.

2 The core idea

Our core idea is to decouple the reporting of the loss from the reissuing of the
token. We wish to encourage the token user to report the loss as soon as possible,
and therefore we wish users to incur no penalty for doing so3. Reporting the loss
should be a “no big deal” activity that gracefully tolerates false alarms.

We model our solution as two metaphorical buttons, a “pre-alert” yellow but-
ton and a “true alert” red button. The semantics of the yellow button are “I
don’t know where the token is, but maybe I’ll find it again soon. Please disable
it temporarily.” Pressing the yellow button is a lightweight and no-hassle oper-
ation (involving no interaction with call centres) that has the effect of notifying
the back end that the token has been lost: the back end should reject any at-
tempts at authenticating with that token until otherwise notified. Pressing the
yellow button should not, however, revoke the token or initiate any heavy-duty
administrative actions such as issuing a new one.

The semantics of the red button are “I really think I lost it now, and I have
given up any hope of finding it again. But I need to use it, so please send me
a new one instead.” Pressing the red button is a request to revoke the lost to-
ken permanently and to issue a replacement for it. It will involve cost in several
dimensions, potentially including administrative actions requiring unpleasant in-
teractions with voice menu systems and call centre operators, penalties, handling
costs and delays, but will only be invoked as a last resort.

Pressing the yellow button (freezing the accounts) is a cheap action that
can be undone, whereas pressing the red button (revoking the accounts) is an
action that is both expensive and irrevocable. The advantage of this yellow/red
strategy is that it lowers the cost to the user of taking protective security action
and therefore it increases the likelihood that such action will be taken promptly,
keeping the user more secure.

At this stage we are building a mental model for the user rather than a
particular implementation: we said “metaphorical buttons” because we do not
necessarily envisage them as physical buttons on a physical device. If they were,
and they do not have to be, we would have to specify on which device they would
appear (clearly not on the token whose loss we are considering reporting). It may
well be, for example, that the yellow button is implemented simply by sending a
particular SMS or email to a designated recipient. The red button, on the other
hand, will involve similar procedures to those currently in use for revoking a
3 To those objecting that reporting the loss freezes the account and prevents the user
from logging in, we point out that, having lost the token, the user is unable to log
in whether or not they report the loss.

3



lost token, because there must always be a hierarchy of more and more time-
consuming but more and more powerful emergency procedures one can invoke
even if every supporting piece of authentication evidence (including security
tokens, passports, etc.) has been lost or has otherwise become unaccessible.

There is of course the question of how the red and yellow buttons are them-
selves secured, and how the yellow button is “unpressed”4. There are a number
of plausible instantiations, but we present one next. The red and yellow buttons
may actually just be codes generated at the time the token was delivered to the
user (either initially or after the last press of the red button). These codes can
be likened to GPG revocation certificates [2]: they should be stored in a way
that the true owner is sure to maintain access to them, but it is not horrible
if others also gain access. This is because if someone else accesses the red or
yellow button, they can lock or revoke the token (just as they could publicize
the revocation certificate to revoke a GPG key), but that is arguably the correct
outcome given that the token is no longer in the hands of its legitimate owner.
Storing the red and yellow button codes on one’s phone is reasonable (as long
as there is also a more permanent copy somewhere, say taped to the electricity
meter at home).

When the yellow button is pushed, whoever pushes it is given an unlock
code, which should be high enough entropy to be unguessable, so it is basically
a capability to unlock that particular yellow-button pressing. The only ways out
of the yellow state are with the unlock code issued when the state was entered,
or by pushing the red button.

Some users may indeed be tempted to “keep the yellow button pushed” when-
ever they are not actively using the token (or perhaps whenever they get on an
airplane), and this is not totally unreasonable. The downside of this conservative
strategy is that it amounts to manual locking and unlocking of the token at every
use, which negatively affects usability; moreover, the user is betting that he will
not lose his copy of the unlock code—the risk to the bet is having to push the
red button, as the only ways out of the yellow button state are with the unlock
code issued when entering the state, or the red button.

This is only a sketch, rather than a full design addressing all the relevant
issues of authentication to the freezing proxy or revocation proxy5 after having

4 The yellow button is logically a switch with two states, “alert on” and “alert off”; so
the “yellow alert” state stays on until explicitly revoked. The red button, instead, is
logically more akin to a “trigger” button that can be used to fire off an alert but not
to say when the alert is over (it will be over when the replacement token is shipped
to the user). So if the yellow button is implemented by sending an SMS, then another
SMS must be sent to unpress the button. A timeout would also work but would be
less secure and would remove control from the user and we therefore advise against
it.

5 Defined as the in-cloud servers that the yellow and red buttons respectively talk
to, and that consequently issue “account freeze” or “account revocation” commands
to the servers on which the user accounts are hosted. This level of indirection is
necessary when one token unlocks accounts on distinct servers. We shall explore this
idea further in the next section.

4



lost the authentication token, of the trust relationship between the proxy and
the user, of the possibility that attackers might go after the proxy instead of the
token and so forth. We do however consider it an improvement over the status
quo and a solution with wide applicability, and we therefore consider the idea
worthy of wider discussion even at this preliminary stage.

3 Red/Yellow for Pico

Most banking tokens are dedicated, in the sense that each bank issues its own;
if a person has accounts with three banks, they generally need to use three
different tokens. This makes things easy for the bank, who has full control over
the design and operation of both endpoints, but complicated for the user, who
might accrue a keyring of tokens as bulky as that of a prison warden. From
the user’s viewpoint it would be much more interesting to use a universal token
capable of granting access to several independently run accounts.

We originally conceived the red/yellow idea in the context of the Pico [3]
project6, which is indeed a universal authentication token: rather than being tied
to one particular issuer or back-end service, it contains potentially thousands of
independent login credentials for the same user, for accounts on many unrelated
back ends. We shall now therefore discuss how to apply the red/yellow button
idea to Pico, not so much because that is where the idea occurred to us originally
but because doing so highlights the complications associated with the additional
level of indirection required to deal with multiple independent back-end verifiers.

Within the Pico system, pressing either button requires contacting all the
back-end servers on which the user has accounts. This in itself is a penalty to
pay, at least in terms of privacy loss. While Pico allows the user to maintain
a separate persona for every service (or even several personae with the same
service), pressing the yellow (or, a fortiori, red) button would allow a global
network observer to link the many simultaneous revocation requests back to
the same Pico, thus deanonymizing the user. Temporal linking might give the
user away even if mixes, remailers or other network anonymizers were used to
obfuscate the source of the requests. Adding random delays of sufficient magni-
tude between the revocation requests, in an attempt to frustrate such relinking,
would leave a window of vulnerability between discovery of loss and protection
of account that somehow goes against the motivating principle of introducing
the red/yellow button architecture.

An alternative strategy, geared towards privacy, exploits the Pico’s “network
share server” [3, Section 4.1] that must send a periodic keep-alive signal without
which the Pico locks up. In this strategy the user who has lost the Pico sends
the revocation requests (or at least the yellow ones) just to that server, telling
it to stop providing its keep-alive signal, but without notifying the actual back
ends. This has the security disadvantage of not locking the accounts immediately
but only within the time interval (say half a day or one day) within which the

6 https://mypico.org

5

https://mypico.org


Pico expects to hear the keep-alive signal again from its network share server. It
also has the additional security disadvantage that, if the adversary managed to
extract any credentials from the lost Pico (either through hardware attacks or
by capturing it before it locked itself), then the block will be totally ineffective
because the back ends won’t know about it. This strategy offers some privacy at
some cost in security and it is debatable whether this is the appropriate trade-off.

A variant of this strategy, geared towards both privacy and immediacy of re-
vocation but with an efficiency cost for the user, is to require the network share
not just once or twice a day but at every authentication request. This implements
a different trade-off, with greater security (accounts are locked immediately) at
the cost of greater energy consumption for the Pico, greater latency for every
login and potentially lower availability as the user won’t be able to log in when-
ever the network share server is unreachable, even if the server to which the user
intended to log in is reachable.

Yet another strategy, also geared towards privacy and immediacy of revo-
cation but with the inefficiency cost shifted towards the servers, might involve
some kind of “anonymized” public revocation, by which we mean an architec-
ture with the following properties. There is an append-only publicly writable
bulletin board in the cloud (suitably protected against denial of service) where
yellow and red button presses end up. Each button press is encrypted (with
suitable randomization) with the public key of the service it intends to freeze or
revoke, to ensure that a global network observer may learn that Alice froze or
revoked something, but not what7. Each service is notified by the bulletin board
whenever a write event occurs and must attempt to decrypt the new message in
case it was addressed to that service (this inefficiency being the cost of privacy
protection for the user). It is interesting to discuss the incentives of the parties
involved, in search of a reward system that would motivate the services to incur
this extra cost in order to protect the privacy of their users.

4 Conclusions

We have sketched a simple and very general idea for allowing users of secu-
rity tokens to report loss of token without incurring the heavy penalty usually
associated with doing so. This should in turn improve security.

The idea is still at an early stage and we have not implemented it yet. We
are keen to discuss further architectural and scalability considerations with our
peers at the workshop.

Acknowledgements

The authors with a Cambridge affiliation are grateful to the European Research
Council for funding this research through grant StG 307224 (Pico). Goldberg
7 So when Alice loses her Pico and presses the yellow button, thus writing hundreds
of revocations to the bulletin board, the NSA learns that Alice lost her Pico, but is
none the wiser about what services she has accounts with.

6



thanks NSERC for grant RGPIN-341529. We also thank the workshop attendees
for comments.

References

1. Bonneau, J., Preibusch, S., Anderson, R.: A birthday present every eleven wallets?
The security of customer-chosen banking PINs. In: FC ’12: Proceedings of the 16th

International Conference on Financial Cryptography. (March 2012)
2. The Free Software Foundation: The GNU Privacy Handbook. https://www.gnupg.

org/gph/en/manual/c14.html#REVOCATION (1999)
3. Stajano, F.: Pico: no more passwords! In: Proceedings of the 19th international

conference on Security Protocols. SP’11, Berlin, Heidelberg, Springer-Verlag (2011)
49–81

7

https://www.gnupg.org/gph/en/manual/c14.html#REVOCATION
https://www.gnupg.org/gph/en/manual/c14.html#REVOCATION

	Red button and yellow button:usable security for lost security tokens(Position paper)

