
Slitheen: Perfectly Imitated Decoy Routing
through Traffic Replacement

Cecylia Bocovich
University of Waterloo

cbocovic@uwaterloo.ca

Ian Goldberg
University of Waterloo

iang@cs.uwaterloo.ca

ABSTRACT
As the capabilities of censors increase and their ability to perform
more powerful deep-packet inspection techniques grows, more pow-
erful systems are needed in turn to disguise user traffic and allow
users under a censor’s influence to access blocked content on the In-
ternet. Decoy routing is a censorship resistance technique that hides
traffic under the guise of a HTTPS connection to a benign, uncen-
sored “overt” site. However, existing techniques far from perfectly
mimic a typical access of content on the overt server. Artificial
latency introduced by the system, as well as differences in packet
sizes and timings betray their use to a censor capable of performing
basic packet and latency analysis. While many of the more recent
decoy routing systems focus on deployability concerns, they do so
at the cost of security, adding vulnerabilities to both passive and
active attacks. We propose Slitheen, a decoy routing system capa-
ble of perfectly mimicking the traffic patterns of overt sites. Our
system is secure against previously undefended passive attacks, as
well as known active attacks. Further, we show how recent in-
novations in traffic-shaping technology for ISPs mitigate previous
deployability challenges.

CCS Concepts
•Security and privacy→ Privacy protections; Network security;
•Networks→ Network protocols;

Keywords
censorship resistance, decoy routing, network latency, TLS, HTTP
state

1. INTRODUCTION
Historically, censorship efforts paralleled advances in society and

technology that promoted the production and dissemination of in-
formation. From literature [6], to music and art [2], almost all
forms of human expression have undergone scrutiny and censor-
ship by powerful authorities, including governments, religious or-
ganizations, and individuals. Resistance to censorship comes in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24 - 28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978312

form of faster and more reliable methods of distributing informa-
tion, prompting in turn an increase in the efforts of the censor to
combat these innovations.

The cat-and-mouse relationship between censors in power and
their resisting constituents continues to the present day. The Inter-
net, although originally a tool developed by the United States gov-
ernment and research laboratories as a backup communication net-
work, has blossomed into a diverse and powerful means of commu-
nication, social organization, and distribution of information. Un-
fortunately, governments and other political authorities have rec-
ognized the potential of uninhibited international communication
to change the balance of power. Many countries as a result have
adopted a centralized network infrastructure [1,16] that makes traf-
fic easy to surveil and filter.

The capabilities of censors to monitor and control traffic inside
their sphere of influence has expanded in the last few years, neces-
sitating increasingly rigorous techniques to counteract state-level
censorship of the web. In response to increasingly popular cen-
sorship-resistance tools such as Tor [4], censoring authorities such
as the Great Firewall of China (GFC) have used sophisticated deep-
packet inspection (DPI) techniques [23] to analyze application-level
data in TLS connections to detect the usage of censorship circum-
vention techniques.

Decoy routing [7,12,14], or end-to-middle (E2M) proxying [25,
26], is a proposed solution to censorship that combats state-level
adversaries with state-level defenses. Decoy routing relies on the
deployment of relay stations to routers belonging to friendly par-
ticipating ISPs outside of the censor’s sphere of influence. Users
access blocked content by tagging traffic to an uncensored, overt
website, indicating to a deployed relay station—on the network
path between the user and the benign site—that they wish to access
blocked content covertly. The tag provides the means for the re-
lay station to open a proxy connection to the censored website. By
moving the client side of the proxy to the middle of the network,
the client’s use of decoy routing systems remains undetectable by
the censor.

Existing decoy routing systems are vulnerable to latency analysis
and website fingerprinting attacks. In 2012, Schuchard et al. [18]
showed that simple latency analysis allows a censor to not only
distinguish decoy routing traffic from regular traffic, but also deter-
mine which censored sites were accessed by the client. Although
there is no evidence of censors using more traditional website fin-
gerprinting techniques [11,21] to take advantage of the differences
in packet sizes, timings, and directionality to distinguish between
a regular visit to the overt site and a disguised visit to a different
censored page, the capabilities of modern censors are sufficient to
support these more sophisticated techniques.

Existing systems that have addressed challenges to deployment
have opened themselves up to active attacks. The success of decoy
routing schemes relies on adoption by a large and diverse group
of ISPs. As such, challenges to deployment such as requiring in-
line blocking and symmetric flows have proven to be prohibitive
enough to inhibit the use of decoy routing schemes. Recent at-
tempts at reducing these requirements have exposed the system to
active attacks [25] that definitively identify decoy traffic, or sim-
ple passive attacks due to their highly unusual traffic patterns [7].
Whether through an active attack or by identifying unusual brows-
ing patterns, a censor that is able to identify the use of decoy routing
may block the client’s use of the system or seek out the client for re-
crimination, rendering the service in the best case useless and dan-
gerous at worst. We argue that as the capabilities of both censors
and friendly ISPs continue to grow, the challenges to deployability
will lessen and the need for highly secure systems will grow. In
fact, existing DPI equipment can force route symmetry or share a
flow’s state between multiple DPI boxes [17].
Our contribution. In this paper we propose Slitheen,1 a novel de-
coy routing system that defends perfectly against latency analysis
and fingerprinting attacks by perfectly mimicking an access to an
allowed, uncensored site. We use careful knowledge of the HTTP
protocol to deliver censored content to users in the place of image
or video resources from the overt, decoy site. By only replacing un-
necessary “leaf” resources, we ensure that the client will fully load
the overt site in the same manner and timing as a typical access.
A key feature of our replacement protocol is to forward packets as
soon as possible after they arrive at the station to prevent adding
latency in the replacement process. This requires keeping track of
the TCP, TLS, and HTTP states of each flow in order to correctly
handle delayed or missing packets. Our technique forces censored
content to hold the same shape as benign traffic to the overt destina-
tion, eliminating the censor’s ability to use latency or packet sizes
and timings to identify Slitheen traffic.

We stand firmly on the side of security in the above-mentioned
security-deployability trade-off, but argue that advances in traffic
shaping technology mitigate previously prohibitive barriers faced
by potential participants. Traffic shapers support the practice of
in-line blocking and allow ISPs to force traffic that crosses into
their domain into symmetric flows. Still, to reduce the amount of
overhead our system adds to regular traffic flow, we only institute
flow blocking of downstream data.

In the next section, we give a general overview of decoy rout-
ing and discuss existing techniques. We then introduce Slitheen,
our proposed decoy routing scheme in Section 3. In Section 4, we
discuss the security of our system and our defenses to both pas-
sive and active attacks, including latency analysis and website fin-
gerprinting techniques. We end the discussion with a comparison
to existing decoy routing schemes. In Section 5, we discuss our
proof-of-concept implementation and follow with an evaluation of
its performance in Section 6. Finally, we conclude in Section 7.

2. RELATED WORK
Early censorship circumvention systems consisted of a simple

proxy. A user could hide their destination site from a censoring
ISP by instead making an encrypted connection to a proxy server
outside of the censor’s area of influence. A censor would see that
the client had made a connection to the proxy, but would be un-
able to determine which webpage the client visited. Tor [4] is a
much more robust system, with stronger anonymity properties, that

1Slitheen is named after a Doctor Who alien capable of taking the
exact form of its victims.

is widely used for censorship circumvention in a similar manner.
Tor extends the simple proxy model by routing the user’s traffic
through a circuit of three proxies, or relays. The additional hops
guarantee web-browsing anonymity for the client, even in the event
that the censor has compromised one of the relays. However, Tor
itself does not mask a client’s participation in the system. Clients
select relays from a publicly available list, one that is also available
to a censoring authority. Censors have been known to block access
to Tor by simply blacklisting connections to known Tor entry, or
guard, relays [20].

In response to the blocking of Tor guards, the Tor Project has
begun to gradually and selectively release the location of secret or
hidden entry relays, called bridges [19]. A client may use these
relays to continue circuit construction with publicly listed relays.
As Tor bridges are not included in public Tor directories, they are
much more difficult for a censor to track down and block. However,
censors such as the Great Firewall of China (GFC) have employed
other techniques to identify Tor traffic in the event that the client is
using a hidden entry to Tor.

Tor traffic has several distinguishing characteristics that are nec-
essary for providing anonymity, but allow a censor to distinguish
Tor traffic from regular traffic to an unknown IP address. In 2012,
Winter and Lindskog experimentally confirmed that the GFC could
identify the use of Tor bridges with deep packet inspection (DPI)
boxes due to the unique ciphersuite list sent by Tor clients in the
TLS ClientHello message [23]. Furthermore, Tor traffic is distin-
guishable in the fact that all packets entering and leaving the Tor
network are padded to 512-byte cells.

2.1 Pluggable Transports
In an effort to disguise connections to Tor, various pluggable

transports have been proposed to change the shape and protect the
contents of connections to Tor bridges and guard relays. To dis-
guise easily identifiable traffic patterns, transports take two main
approaches: obscuring the traffic patterns randomly, or mimicking
existing protocols. Transports such as Obfsproxy [3] and Scram-
bleSuit [24] aim to make the traffic look as random as possible, re-
lying on the censor’s use of blacklisting to ignore a connection that
does not match typical Tor traffic. Others, such as Marionnete [5],
SkypeMorph [15], and StegoTorus [22] aim to mimic allowed pro-
tocols as closely as possible to avoid raising the suspicion of the
censor.

Meek [10] is a recently proposed system that relies on an innova-
tive technique called domain fronting to hide the true destination of
a client’s traffic. Unlike existing pluggable transports, Meek traffic
appears to the censor to be heading to a legitimate, allowed website.
The censored, covert destination (typically a proxy running on the
same cloud service as the allowed website) is instead hidden in the
Host: header field of the HTTP header to the allowed site. Des-
tination information appears in three different places in an HTTPS
request: the IP address, the TLS Server Name Indication (SNI) ex-
tension, and the Host header of the HTTP request. While the first
two are viewable by a censor or any router between the client and
the destination, the HTTP request is encrypted with all other ap-
plication data after the completion of the TLS handshake. Domain
fronting is the practice of specifying one domain, usually an edge
server for a cloud service, in the IP address and SNI fields, while
setting the encrypted HTTP host header to a different domain.

To make a connection to Tor using Meek, the client establishes a
TLS connection with an edge server of an overt destination that al-
lows domain fronting. Many content distribution networks (CDNs)
and large websites, such as Google App Engine and Amazon Cloud-
Front, allow domain fronting for web applications that subscribe to

Figure 1: An overview of the Telex [26] architecture. A client first
initiates a TLS handshake with the overt destination, tagging the
ClientHello message (1). The relay station recognizes the tag, and
then continues to passively monitor the TLS handshake (2). Upon
receipt of the TLS Finished messages from both sides, the station
decrypts and verifies the Finished messages with the session’s TLS
master secret, computed from the client’s tag. Finally, the station
will sever the connection to the overt site (3), and assume its role
as a proxy to the censored, covert site (4). Slitheen is very similar,
except that in step (3), the connection between the client and the
overt destination is maintained and actively used.

their services. The proxy only has to subscribe and pay for band-
width (shown to be between $0.10 and $0.20 USD per GB [10]) in
order for their service to be accessible from an overt edge server.
After establishing a connection to the overt destination, the client
can issue HTTP requests to the Meek proxy. Packets are redirected
to the proxy by the overt destination according to the host field
of the HTTP header. The client’s Tor traffic is then tunneled over
HTTP to the proxy and sent to a Tor guard. In this way, the proxy
to Tor “hides” behind the cloud service. To block all traffic to the
Meek proxy, the censor would have to block all traffic to the front
service, causing collateral damage.

Domain fronting relies on the deterrence of collateral damage. If
the censor knows the existence of the domain fronted proxy, they
may block it only by blocking the entire front service. This may be
prohibitively expensive in terms of collateral damage for large web
services and therefore unappealing to the censor.

2.2 Decoy Routing
The first generation of decoy routers surfaced in 2011, proposed

by three independent research groups. Telex [26], Cirripede [12],
and Curveball [14] all use the same basic technique in which the
client steganographically expresses a desire to access censored con-
tent covertly by tagging the setup messages in a seemingly benign
connection to an overt destination, sometimes referred to as a de-
coy server. These tags are recognized by a friendly ISP with a
deployed relay station on the path between the client and the overt
destination, but are provably invisible to a censoring ISP without
the relay station’s private key. After the tag has been recognized,
the station facilitates the flow of information between the client and
a censored website via a man-in-the-middle proxy. The details of
the tagging process and proxy setup vary; Figure 1 shows the gen-
eral architecture of Telex, which is most similar to our system.

In Telex, the tag is placed in the random nonce of the Clien-
tHello message that initiates a TLS handshake with the overt site.
From this tag and the station’s private key, the station can compute
the client’s Diffie-Hellman (DH) exponent, allowing it to compute
the session’s TLS master secret and man-in-the-middle the connec-
tion between the client and the overt destination. Upon the receipt,
decryption, and verification of both TLS Finished messages, the
station severs the connection to the overt destination and assumes
its role as a proxy, preserving the server-side TCP and TLS state.

The client may then connect to a censored covert webpage through
the relay station; the traffic between the client and the covert des-
tination appears to the censor as encrypted traffic to and from the
overt site.

Cirripede takes a different approach by inserting a tag in the Ini-
tial Sequence Numbers (ISNs) of TCP SYN packets to register the
client with the relay station over the course of 12 TCP connec-
tions. Once registered, the client initiates a TLS connection with
an overt destination, now routed by the relay station through a ser-
vice proxy, and sends an initial HTTP GET request. After the re-
quest goes through, the service proxy terminates the connection on
behalf of the client, and begins to impersonate the overt destina-
tion. The proxy generates a new TLS session key, computed from
the registration tag and station private key, and issues a Change-
CipherSpec message and Finished message to the client. Once the
client responds with a valid Finished message, the service proxy
begins to relay traffic between the client and the censored site until
a predetermined time interval has passed.

In Curveball, the client and the relay station share a predeter-
mined secret, obtained through the use of a covert channel. This
secret is used to generate a tag recognizable by the station and is
inserted in the ClientHello message of a TLS handshake to the overt
destination, similar to Telex. Upon receipt of this tagged message,
the relay station observes the completion of the TLS handshake
with the overt destination, and assumes the role of the server, send-
ing the client a Hello message in the form of a TLS record en-
crypted with the client-station shared secret. Once the client re-
sponds with a similar Hello message, the station begins to proxy
traffic between the client and the censored site.

Despite the strong deniability properties of the three first-ge-
neration schemes, none achieved widespread adoption. Telex and
Curveball require symmetric flows between the client and the overt
destination (i.e., flows for which the upstream and downstream
paths both traverse the same relay station), as well as in-line flow
blocking (i.e., where the relay station must actively modify traf-
fic by dropping, delaying, or modifying packets), speculated to be
a prohibitively large barrier to participation by friendly ISPs [25].
In order to combat these shortcomings, Wustrow et al. proposed
TapDance [25], a non-blocking, asymmetric decoy routing system.
TapDance flows are tagged in an initial, incomplete HTTP GET
request to the overt site, after the negotiated TLS handshake. The
TapDance station recovers the tag (steganographically embedded in
the ciphertext of an ignored GET request header), and uses the cor-
responding secret to encrypt a confirmation, mimicking an HTTP
response from the overt site. The client then sends the station up-
stream requests for a censored site, making sure to never signify
the completion of the initial GET request to the overt site. As such,
the overt site will continue to receive upstream data from the client
without complaint, thereby eliminating the need for flow blocking.
The station fulfills the client’s requests for censored content, issu-
ing encrypted responses on behalf of the overt site. As the only
downstream data from the server are the original TLS handshake
messages (which are not needed by the TapDance station), and
the TCP ACK messages following extra data from the incomplete
header, the station does not need to witness this downstream traffic,
making the scheme amenable to asymmetric flows.

Although TapDance solves two major challenges to deployment,
it also exemplifies the trade-off between deployability and security.
By leaving the connection between the client and overt destination
open but abandoned, TapDance becomes vulnerable to active at-
tacks by an adversarial censor. The station sends HTTP responses
in place of the overt server, resulting in a discrepancy between the
TCP state of the overt site and the TCP state witnessed by the cen-

sor. A passive censor would not notice this discrepancy, as the overt
site will ignore client packets with an acknowledgement number
higher than the overt site’s TCP SND.NXT value. An active at-
tacker, however, may determine the actual TCP state of the overt
site by replaying a TCP ACK packet with a stale sequence number,
prompting the server to reveal its current TCP state, and incrimi-
nating the client.

Rebound, proposed by Ellard et al. [7], is the most recent decoy
routing system and aims to solve the trade-off mentioned above,
providing an asymmetric solution that defends against an active ad-
versary. Clients tag Rebound flows in a manner similar to Telex, by
inserting a tag in the ClientHello message of a TLS handshake, en-
abling the Rebound station to compute the master secret of the TLS
connection between the client and the overt site. They achieve an
asymmetric version of the tagging procedure by leaking the val-
ues of the server random nonce and the ciphersuite to the Rebound
station by embedding them in the ciphertext of initial HTTP GET
requests from the client to the overt site. Once the Rebound station
is able to man-in-the-middle the TLS connection, the client begins
issuing requests for censored content embedded in invalid HTTP
GET requests to the overt site. The relay station fetches the cen-
sored content and stores it in a queue. When the next invalid GET
request is received by the Rebound station, the station replaces the
URL field of the request with content from the censored site. This
information is forwarded to the overt site, which “rebounds” the
encrypted content, inside an HTTP error response.

Rebound maintains the connection between the client and the
overt site, making it resistant to the TCP replay attack mentioned
above. The TCP state of the overt site will report the TCP sequence
and acknowledgement numbers expected by the censor. Further-
more, by rebounding content off of the overt site in the form of
error messages, Rebound delivers downstream data from the proxy
to the client even if the underlying network routes are asymmet-
ric. There are two major barriers to the adoption of Rebound as
a censorship resistance technique. The first barrier is that a client
must send upstream data in an equal amount to the downstream
data they receive to avoid mismatched TCP sequence numbers up-
stream, alerting the censor of a decoy session. In typical Internet
usage, the ratio between upstream data sent and downstream data
received by the client is very low; this trend is reflected in the band-
width provided by most ISPs. The second barrier to adoption is the
flood of bad HTTP GET requests that the client sends to the overt
site. The frequency and size of these requests are reminiscent of
HTTP flooding, a class of Denial of Service attacks, and will likely
be blocked by the overt site.

The two most recent decoy routing systems have addressed the
shortcomings of first generation systems, notably those of deploy-
ability in the case of TapDance, and security against some active
(but not all passive) attacks in the case of Rebound. However, all
existing systems are vulnerable to the timing analysis attacks in-
troduced by Schuchard et al. [18]. They showed that differences
in latency due to fetching content from a possibly distant censored
server through the decoy routing proxy is enough to not only detect
the usage of a decoy routing system, but also fingerprint the cen-
sored webpage accessed. Although Rebound’s stored queue of cen-
sored content reduces the latency that stems from proxying traffic
between the client the covert destination, it does not account for the
latency introduced by the relay station in replacing the contents of
the HTTP GET request. Furthermore, all previous systems are vul-
nerable to traditional website fingerprinting techniques, in which
the censor can compare packet sizes, timings, and directionality to
differentiate between decoy and regular traffic while fingerprinting
the censored site.

We designed Slitheen to defend against latency analysis and web-
site fingerprinting attacks. We present a system that perfectly mim-
ics the expected packet sequences from the overt site and tech-
niques for reducing the latency introduced by the Slitheen station.
Our system also provides strong defenses against active and routing-
based attacks, including the TCP replay attack mentioned above.
We give the details of our system and provide a security analysis
and comparison to previous systems in Section 3 and Section 4,
respectively.

3. SLITHEEN SYSTEM DETAILS
Slitheen defends against passive latency analysis and website fin-

gerprinting attacks by perfectly imitating a typical access to an al-
lowed, overt destination. We accomplish this by maintaining the
connection to the overt site after the completion of the tagging pro-
tocol in the TLS handshake. At this point, the relay station is able to
man-in-the-middle the TLS connection to the overt site and monitor
or modify both upstream and downstream data. The station extracts
upstream data to the covert destination from specialized headers in
valid HTTP GET requests to the overt site, and replaces image or
video resources from the overt site with downstream data from the
covert destination. In this section, we give a high-level overview
of the Slitheen architecture and follow with a detailed discussion
of the replacement protocol. We show an overview of the Slitheen
architecture in Figure 2.

3.1 Architecture Overview
A typical access to content on the web consists of a collection of

TCP connections, over which flow HTTP requests and responses.
The first connection to the overt destination typically requests an
HTML document, which in turn prompts the client’s browser to
issue several more requests to HTTP servers (the same or different)
to collect various resources such as cascading style sheets (CSS),
JavaScript, images, and videos. Certain types of resources, such as
CSS or Javascript, may in turn require additional resources to be
fetched by the client’s browser. Others, such as images or videos,
are “leaf” content types in that they never contain a request for an
additional resource.

In Slitheen, we have the client access the overt site exactly as
a regular user would, fetching both the original HTML page from
the overt site as well as all additional resources necessary to com-
pletely load the page. When a client initiates a Slitheen session
with the desire to proxy information to a censored, blocked site,
they first randomly generate a 32-byte Slitheen identification num-
ber. They then proceed to access the overt site through the use of an
overt user simulator (OUS) running on the client’s machine (as part
of the Slitheen client code). The OUS is a headless browser that
requests a page from an overt destination over a tagged TLS con-
nection. When the OUS receives a resource that contains a request
for additional resources, it issues these requests over tagged TLS
connections to the servers that host them. Although the OUS must
also realistically simulate the client’s usual browsing habits and add
“think time” between different overt page accesses, we leave this as
future, and largely orthogonal, work.

The tagging procedure of Slitheen is identical to that of Telex,
though in principle we could use something different, as the tagging
procedure is not the contribution of Slitheen. The client’s OUS ini-
tiates a tagged flow with a decoy routing station by inserting a Telex
tag into the random nonce of the ClientHello message at the begin-
ning of the TLS handshake with the overt site. If the path between
the client and the overt site crosses into the territory of a friendly
ISP with a deployed Slitheen station, the tag is recognized and the

Figure 2: After the establishment of a TLS session between the client’s Overt User Simulator (OUS) and the overt site, the Slitheen station
may monitor the encrypted traffic (shaded) in both directions. The station receives upstream proxy data from the client in an X-Slitheen
header of a valid HTTP GET request to the overt site. Once the station has relayed the upstream data to the censored site, it stores the
downstream responses in a queue. When the station receives responses from the overt site, it replaces leaf content types such as images with
the queued data. This data is then forwarded by the OUS to the SOCKS frontend and finally received by the client’s browser. The censor
sees only the TLS handshake and encrypted traffic to and from the overt site.

station continues to passively observe the TLS handshake, allowing
it to compute the shared master secret for the TLS connection.

After the TLS session has been established and the tagging pro-
cedure is complete, the Slitheen protocol deviates from Telex. Ra-
ther than terminating the connection to the overt site on behalf of
the client or leaving it stale, the station continues to passively mon-
itor the session as the OUS proceeds to request content from the
overt site in the usual manner. When the OUS issues a valid HTTP
GET request for a resource to the overt site, the Slitheen station
inspects the headers of this request for an X-Slitheen header con-
taining the Slitheen identification number of the client, and any up-
stream data meant for a covert destination. The station now asso-
ciates the tagged flow with the given Slitheen ID, replaces the con-
tents of this header with garbage bytes, and allows it to continue
to the overt site. If the X-Slitheen header contained upstream data
to be proxied to a covert destination, the station simultaneously re-
lays this data, and stores any responses in a queue of content for
the Slitheen ID, to later replace leaf content from overt sites to the
client associated with the given ID. If the overt site has a large
amount of images or a video stream, a large amount of content can
be delivered to the client quickly, allowing them to browse latency-
sensitive covert sites. To keep the size of HTTP requests consis-
tent with the addition of the X-Slitheen header and data, the client
may replace only non-essential headers or compress existing head-
ers to be later decompressed by the relay station before they are
forwarded to the overt site. If the existing headers are compressed,
the X-Slitheen header is simply removed by the relay station.

When the Slitheen station receives downstream traffic from an
overt site, it first decrypts the TLS record and inspects the HTML
response for the content type of the resource. If the content type is
not a leaf type, the station will re-encrypt the record and let the
resource pass unaltered to the client. If the resource has a leaf
content type, the station will replace the response body with data
from the downstream queue pertaining to the Slitheen ID of the
flow and change the content type of the resource to “slitheen”. It
then re-encrypts the modified record, recomputes the TCP check-

sum, and sends the packet on its way. If there is a shortage of
downstream data, the station will replace the resource with garbage
bytes, padding the response body to the expected length. When the
OUS receives the resource, it sends all resources of the “slitheen”
content type to be processed and sent to the client’s (real, not OUS)
browser. All other resources, it processes in the usual manner. Note
that the usage of a Slitheen ID allows covert data for a single client
to split across multiple tagged flows.

By replacing the leaf resources of valid HTTP requests, Slith-
een perfectly imitates an access to an overt site. Regardless of ad-
vances in website fingerprinting techniques, a censor will be un-
able to distinguish between a Slitheen decoy routing session and
a regular access to the overt site based on packet sequence pat-
terns such as packet lengths, directionalities, and timings. As in
Rebound, we completely eliminate one form of latency identified
by Schuchard et al. by not waiting for responses from possibly dis-
tant covert destinations; unlike Rebound, however, we instead im-
mediately replace leaf responses with content that is available in
the saved downstream queue. The key insight of Slitheen is that
whenever a packet arrives at the relay station from the overt desti-
nation, the relay station will immediately forward a packet toward
the client with the same size and TCP state; only the (encrypted)
contents of the packet will be possibly replaced with (again en-
crypted) censored content, and only when the replaced content is a
leaf type. We show that this replacement process introduces a mini-
mal amount of latency, leaving the censor unable to detect the usage
of a decoy routing system, and give the results of timing analysis in
Section 6.

Not only does our system design defend against passive attacks,
but also against known active attacks on decoy routing schemes.
Slitheen defends against TCP replay attacks by actively maintain-
ing the connection between the client and the overt site. Since our
replacements match the sizes of requests and responses exactly, the
TCP state between the client and the overt site as seen by the censor
is the true TCP state. Furthermore, Slitheen eliminates the ability
of the censor to identify its use through TCP/IP protocol finger-

printing. The station modifies only application-level data, which is
unidentifiable by the censor as ciphertext. We do not need to mimic
the server’s TCP options, or IP TLS values as these are supplied by
the overt site itself. We give a more complete security analysis of
Slitheen and a comparison to existing systems in Section 4.

3.2 Content Replacement Details
While the replacement of the X-Slitheen headers and leaf content

types is straightforward in theory, it is difficult to achieve in prac-
tice while also minimizing the latency introduced by the station.
HTTP responses may be spread across multiple TLS records, and
each record may contain multiple responses. Additionally, a record
may be spread across multiple packets, leaving the station unable
to decrypt a record to replace its contents or determine the content
type of the responses it contains until the rest of the record has been
received. Furthermore, packets may be delayed or dropped and ar-
rive at the relay station out of order. Waiting for the receipt of an
entire record before sending the observed packet to the client intro-
duces an identifiable amount of latency, which may be used by the
censor to detect the usage of Slitheen.

A simple solution to receiving a record fragment is to forward the
record unchanged and forego any possibly replaceable responses it
contains. However, as record sizes for large image files are fre-
quently large themselves, this results in a significant drop in the
bandwidth available for delivering censored content. To address
this trade-off, we analyzed all possible states that may occur at the
relay station upon the receipt of a packet from the overt site and
determined a replacement procedure that maximizes the amount of
downstream data that can be replaced without delaying packets that
contain partial records.

Record state. When a packet is received by the relay station, the
TLS record state of the flow determines whether the packet’s con-
tents begin with a new record, contain the contents of a previously
processed record, or contain the remnants of a previous record and
the beginning of a new record. The record’s length, specified in
the record header, determines how many full or partial records are
contained in the current packet and how many bytes of subsequent
packets contain the contents of the record. Although the relay sta-
tion may not be able to decrypt a record if it is spread across mul-
tiple packets, it is still able to maintain a view of the record state.
Depending on the HTTP state of the flow, these records may be
safely replaced without being decrypted by the station.

A flow can have an unknown record state if packets arrive at the
station out of order. If the delayed packet does not contain any
new record headers, the station is able to maintain the record state
and processes the received packet in the usual manner, assuming
the eventual receipt of the missing packet. However, if the delayed
packet contained the beginning of a new record, the station has lost
the record state and can only regain it after the missing packet ar-
rives. While the record state is unknown, the station is unable to
encrypt modified records for the client, as it does not know the
lengths or contents of the record(s) in a received packet.

HTTP state. The station also maintains information about the
HTTP state of each flow, indicating whether the next record will
contain all or part of a response header, or response body. We give
the state machine for HTTP responses in Figure 3. The end of a
header is determined, as specified in RFC 2616 [9], by the receipt
of two consecutive carriage return and line feed characters (CRLF):
one to signify the end of the last header field, and one to signify
that there are no more header fields in the message. The length
of the response is determined by the status code of the response,

and the transfer encoding (in which case the length is updated with
each subsequent “chunk”) or the content length. The Content-Type
header indicates to the station whether the subsequent response
should be replaced.

The HTTP state of the flow is updated upon the receipt of a new
record header. Depending on the HTTP state, a record does not
need to be decrypted in order to be replaced. When the station
receives a new record, it checks the record header to determine
whether the record is contained in the TCP segment and may be
decrypted, or whether the record is spread across multiple packets.
It then determines, based on the HTTP state, whether the record
may be replaced. If the HTTP state and the record’s length indi-
cates that it contains only a replaceable HTTP response body, the
station will then construct a new record of the same length and fill
it with downstream data from the client’s queue. After encrypting
the modified record, it sends the first part, matching the length of
the record fragment in the received TCP segment, and stores the
remainder of the modified record to replace the data in subsequent
packets. After the entire record has been sent, the next TCP seg-
ment data will contain the header of a new TLS record.

If, however, the station is unable to decrypt a record that contains
information about the response length or content type, the HTTP
state of the flow will be unknown until the station receives the rest
of the record and decrypts it. In this case, the contents of the record
will be forwarded immediately to the client, without modification
and a copy saved by the station to decrypted when the entire record
arrives. Upon its receipt, the station can re-evaluate the HTTP state
of the flow. Similarly, when the record state of the flow is unknown
due to a delayed or dropped packet, the HTTP state of the flow will
remain unknown until the station receives the missing packet. At
this point, the station will determine the updated state and continue
processing records.

3.3 Future Changes to HTTP
We have designed our system for use with HTTP/1.1, in which

a user issues a sequence of HTTP GET requests to retrieve the
resources on a page. However, the recently proposed HTTP/2.0
specification suggests several changes that increase the efficiency
of page loads by reducing header sizes and allowing concurrently
loaded HTTP responses. Our system requires minor changes to
function with the new specification.

Header reduction in HTTP/2.0 is achieved through compression.
The header fields of an HTTP request or response are compressed
before transmission to their destination. We can still add our own
headers to the list before compression, but special care must be
taken to ensure that the total compressed size of the headers with
our extra data does not vary significantly from the size of a typical
HTTP header to the site. When the headers are received by the
relay station, the station must uncompress the headers to analyze or
modify them, and then re-compress the headers before forwarding
the traffic. If modifications are made, the station must ensure that
the size of the re-compressed HTTP message stays consistent.

To allow for multiple concurrently loaded resources, HTTP/2.0
encapsulates requests and responses in HTTP frames. Each request
and corresponding response is identified by a unique stream ID.
These stream IDs are later used by the client to demultiplex the se-
quence of frames into separate resources. The multiplexing of re-
sources complicates our calculation of the HTTP state at the relay
station as an incoming encrypted record may contain data from sev-
eral streams. The station will need to keep track of the HTTP state
of each stream, but without the ability to decrypt the record and
determine which stream(s) it contains, the station will be unable
to determine the next HTTP state of each stream and will not be

Figure 3: A flow may be in one of several TLS (blue) and HTTP (red, green, and black) states. When a new packet arrives that allows the
relay station to find the beginning of a new TLS record, the station uses the record’s length, its (possibly) decrypted data, and the length of
the packet to determine the next HTTP state. States in the shaded red circle must be decrypted to decide the next state. If the flow is in a
red, shaded state when the relay receives a partial TLS record it cannot decrypt due to missing data, the flow will enter into the UNKNOWN
state until the remainder of the record is received and decrypted. This is represented by the dashed red arrow. States in green dashed boxes
indicate states where data may be replaced. If the HTTP header showed a leaf content type, the relay station will construct a new record to
replace the one(s) it receives. A flow with an HTTP state of UNKNOWN may recover its state by reconstructing partial or missing records
and analyzing the decrypted data, along with the previous known state.

able to replace the record contents with proxied downstream data.
Without testing to determine how often the station will lose track
of the HTTP state of a tagged flow, we are unable to guess at how
difficult it will be to maintain a steady bandwidth for downstream
proxy data. We leave this analysis for future work.

4. SECURITY ANALYSIS
We have analyzed the security of our system by examining the

effectiveness of previously proposed decoy routing attacks [18, 25,
26]. These attacks consider three different types of adversaries: a
passive adversary capable of only monitoring traffic, an active ad-
versary capable of both monitoring and modifying traffic by drop-
ping, injecting, or changing packets inside their area of influence,
and finally a routing-capable adversary who is able to not only
change traffic, but also make routing decisions on traffic that leaves
their network.

The goal of the adversary is ultimately to identify a decoy rout-
ing session. An adversary may also try to identify the censored
content that the client is accessing through the decoy routing ses-
sion. We do not consider attacks that allow the adversarial censor
to perform unrealistic computations or utilize unrealistic amounts
of resources; For example, we assume that the adversary is unable
to distinguish a tagged ClientHello message from a truly random
nonce, as doing so would violate a cryptographic assumption. Sim-
ilarly, we assume that the adversary may not compromise the TLS
session between the client and the overt site by brute-forcing the
overt site’s private key, or performing a TLS downgrade attack.
Furthermore, deployed relay stations and overt sites are assumed
to be geographically outside the censor’s sphere of influence.

4.1 Latency and Fingerprinting Attacks
Added latency in decoy routing systems stems from two sources:

(1) the additional time it takes for the relay station proxy to com-
municate with a possibly distant censored server, and (2) from the
mechanisms of the proxy itself in processing and verifying the TLS
handshake, and manipulating data that flows through it. In their
experiments, Schuchard et al. found that there was a significant
amount of latency from both sources independently, enough to iden-
tify the usage of previous decoy routing systems.

Slitheen defends perfectly against the first type of latency. The
relay station does not wait to communicate with the covert desti-
nation, but forwards packets from the overt site immediately after
possibly replacing their contents with queued downstream proxy
data. Similarly, the station forwards upstream data immediately af-
ter processing the record’s contents to extract the Slitheen ID of the
flow and upstream data for the proxy.

The second type of latency, from the Slitheen proxy itself, is
more difficult to prevent. Schuchard et al. show that Telex exhib-
ited enough latency to detect its usage even by choosing a covert
destination on the same server as the overt destination (effectively
reducing the first type of latency to zero). Although Schuchard et
al. were unable to determine the cause of the latency, their findings
suggest some amount of overhead imposed by the relay proxy and
TLS handshake protocol. While the tagging procedure of Slitheen
matches that of Telex, our proxying protocol behaves very differ-
ently. If there is overhead introduced by the proxy on the relay
station, it will not affect the rate at which incoming packets to the
relay station are processed, replaced, and forwarded to their desti-
nation. We performed a latency analysis of our system by accessing
an overt destination as both an overt site for tagged flows and as a
regular, untagged access. Our results, given in Section 6.2, show

that we do not introduce enough latency to identify the use of our
decoy routing system by timing page loads.

In addition to identifying the use of decoy routing, Schuchard
et al. show that latency can be used to fingerprint packet sequences
and determine which censored webpage a client has accessed. Slith-
een defends against both this and other traditional website finger-
printing attacks by eliminating not only the latency from accessing
distant covert destinations, but also by forcing the packet timings,
sizes, and directionality to exactly follow that of a regular access
to the overt site. The latency fingerprinting method relies on dif-
ferences between the latency distributions of visits to different cen-
sored sites. With Slitheen, accesses to different censored sites will
all produce the same latency distribution, as the latency source is
only in the decryption and re-encryption of records passing through
the relay station.

This, coupled with the fact that the observed packet sequences
of a regular access and a decoy access to any overt destination will
be identical in terms of packet sizes, relative timing, and direction
drastically reduces the censor’s ability to distinguish between the
two types of traffic.

4.2 Passive Attacks
In addition to timing and latency attacks, there are a number of

other attacks an adversary may employ to detect the use of Slitheen.

Protocol Fingerprinting. Previous decoy routing schemes are sus-
ceptible to protocol fingerprinting attacks, in which the adversary
leverages the possible differences in the TCP/IP implementations
of the overt destination and the proxy. Mimicry is an inherently dif-
ficult problem, as any difference in options, parameters, or variable
values can alert the censor to a suspicious change in the connection.
The defense proposed by Wustrow et al. [25] requires each station
to build a profile of each overt site that accounts for all possible
variations in TCP options and IP header values. This solution is
costly in terms of storage and also slow to update; a change in the
TCP options or headers requires an immediate change at the station
to evade censor scrutiny.

Slitheen eliminates risk of protocol fingerprinting by reusing the
TCP and IP headers sent by the overt site. The only differences in
the data sent by the overt site and the Slitheen proxy are the en-
crypted payload and the TCP checksum. Neither of these values
provides the censor with any information that suggests the replace-
ment of the requested resource with proxy data.

Website Fingerprinting. An adversary capable of observing traf-
fic may attempt to fingerprint the website by analyzing packet sizes,
timings, and directionality. Our system eliminates the usage of
packet sizes and directionality features completely, as these will
be identical to those exhibited in a regular access of the overt page.
The relay station merely replaces the contents of overt packets and
does not modify their size or destinations. Furthermore, timings
will remain consistent as we are not holding packets at the relay
station, but rather forwarding them immediately after possibly re-
placing their contents. In Section 6, we will show that these opera-
tions add no discernible latency to loading an overt page.

Station Malfunction. In the event that the relay station fails to rec-
ognize a tagged flow, a Slitheen client’s OUS will interact with the
overt site in the normal manner, avoiding suspicion. Telex and Tap-
Dance clients assume that the station is present and able to block
or monitor upstream flows to the overt destination. If the station is
absent in Telex or Tapdance, the connection to the overt site termi-

nates early or results in an HTTP error message that may indicate
their use to a passively monitoring censor.

4.3 Active Attacks
An active adversary is capable of modifying, injecting, or drop-

ping traffic in addition to passive monitoring. The following attacks
are known active attacks against previous decoy routing systems.

Tag Replay Attack. Our system inherits protection against a tag or
handshake replay attack from the Telex handshake procedure. If an
adversary attempts to replay a tag, they will not be able to success-
fully construct the TLS Finished message without knowledge of the
shared secret, resulting in a connection terminated by the client and
overt destination.

State-Controlled Root Certificates. In deployments where cen-
sors are actively performing man-in-the-middle attacks on TLS traf-
fic by mandating the installation of a state-controlled root certifi-
cate, the resultant flows will not properly proceed through the tag-
ging procedure and will pass through the station unaltered. While
this performs a denial of service attack on Slitheen, it does not re-
veal a client’s usage of the system unless they include X-Slitheen
headers in their upstream requests. To alert the client of the fact
that their decoy routing session has not been safely established, we
propose a slight modification to the TLS handshake in which the
Slitheen station adds an additional input, seeded from the client’s
tag, to the TLS Finished hash sent to the client, after the station has
verified that the Finished messages are correct. When the client re-
ceives the Finished message, they will verify it using the additional
seeded input to determine whether the decoy session has been es-
tablished. If it has, the client proceeds to include X-Slitheen head-
ers with upstream data. If it has not, the client will verify the Fin-
ished message the traditional way and continue with a regular (non-
decoy) fetch of the page. A man-in-the-middle capable of viewing
the plaintext will therefore detect no unusual behaviour from the
client. This modification also serves to notify the client of a failure
in the tagging procedure due to route asymmetry.

Server Collusion. In previous systems, the censor could collude
with or set up an overt destination server to entrap clients that use
that server for decoy routing purposes. In Slitheen, the client’s be-
haviour from the overt site’s perspective will be identical to regular
use with the exception of an X-Ignore header containing garbage
bytes. If the existence of the X-Ignore header is a concern, the re-
lay station can instead replace it with a common but mostly unused
header. However, a censor that monitors information leaving the
overt destination can compare ciphertexts to detect content replace-
ment. In fact, no existing decoy routing system can completely
defend against an adversary that has a complete view of packets
entering and leaving both the client and the overt site. Our system
increases the work of the adversary from previous systems by re-
quiring the colluding parties to compare ciphertexts as opposed to
metadata.

4.4 Routing-Capable Attacks
Routing-capable attacks were introduced by Schuchard et al. [18]

and rely on the censor’s ability to route packets through either a
tainted path (i.e., one on which a Slitheen station resides between
the client and the overt destination), or a clean path (i.e., a path with
no Slitheen station between the client and the overt site). While a
censor may not always be able to find a clean path to the overt desti-
nation, our system defends against an adversary that does have this

Table 1: Slitheen is the first decoy routing system to defend against latency analysis and website fingerprinting attacks. Our method provides
strong defenses against both active and passive attacks, at the cost of requiring symmetric flows and in-line blocking. Although the latter
requirements have been previously thought to be barriers to deployment, we argue that increasingly popular traffic shaping tools provide ISPs
with an easy way to block and redirect traffic, opening avenues for easier deployments. The half-circle indicates that while Rebound stores a
queue of downstream data at the relay to decrease latency, it also increases the latency of their system by sending unusually high amounts of
upstream data.

Telex [26] Cirripede [12] Decoy Routing [14] TapDance [25] Rebound [7] Slitheen

No inline blocking # # # # #
Handles asymmetry # # #
Resistant to replay attacks #
Resistant to latency analysis # # # # H#
Website fingerprinting defense # # # # #
Protocol fingerprinting defense # # # #

ability. We also note that, as in Telex, the location of relay stations
can be public knowledge, and therefore routing-capable attacks to
determine whether a network path contains a relay station (as op-
posed to whether a particular flow is using a relay station) do not
affect the security of our system.

TCP Replay Attack. In a TCP replay attack, the censor attempts
to identify the use of decoy routing by testing whether the client
has a TCP connection with the overt site. The censor can replay
a TCP packet sent by the client on a clean path. In TapDance and
first-generation decoy routing systems, the connection between the
client and the overt site has been severed or abandoned and the
overt site will issue a TCP RST packet or a stale TCP sequence
number, signaling to the censor the usage of decoy routing. Note
that in TapDance, the adversary does not need to find a clean path,
but can inject a TCP packet into the stream. Since the TapDance
station does not perform in-line blocking, the packet will be for-
warded to the overt destination despite the fact that it traverses a
tainted path.

Our system maintains a TCP connection to the overt destination,
providing a defense against this type of replay attack. Every TCP
packet sent by the client is received by the overt site throughout
the duration of the decoy-routed connection. Upon the receipt of a
replayed packet, the server will send a duplicate acknowledgement
in an identical manner to a regular connection.

Crazy Ivan. The Crazy Ivan attack involves a censor with the abil-
ity to control the path a client’s packets take to their destination to
detect the usage of, or deny availability to, decoy routing. The cen-
sor allows a client to connect to the overt site through a tainted path,
and waits until the TLS session has been established to redirect the
flow down a clean path.

In previous systems, this attack gives the censor overwhelm-
ing evidence of decoy routing. Systems such as Telex, Cirripede,
Curveball, and TapDance that sever or abandon the connection be-
tween the client and the overt destination will be unable to block
packets sent down the new clean path, resulting in TCP RST pack-
ets from the overt site. By keeping the connection between the
client and the overt site active, both Slitheen and Rebound offer a
defense against this type of detection attack. Packets sent down
a clean path will be received by the overt destination in the usual
manner, prompting the server to send the requested resource (in
Slitheen) or an HTTP error message with the invalid request (in
Rebound). The TCP sequence and acknowledgement numbers will
match those that the censor expects. The censor, unable to de-
crypt these packets, will see no difference in the traffic. However,
if the client is compressing HTTP GET requests to provide more

upstream bandwidth, the server will respond to such a request sent
down a clean path with an HTTP error messages, raising the sus-
picion of the censor. To defend against this attack, the client can
replace or compress only non-essential headers, taking a loss to
upstream bandwidth.

Forced Clean Paths. An adversary with the ability to chose be-
tween clean and tainted paths may route around a Slitheen station
altogether. This would prevent the client from ever coming into
contact with a participating ISP. Although the consequences of this
attack would result in a complete loss of availability to the decoy
system, Houmansadr et al. [13] show that this attack is too expen-
sive for realistic censors, and very unlikely. We also note that this
attack is only a denial of service, and will not leak information
about whether the client is using or has used Slitheen.

4.5 Comparison to Existing Systems
A large advantage of Slitheen over existing systems is its resis-

tance to latency analysis and website fingerprinting attacks. We not
only eliminate the ability to use latencies to fingerprint the censored
webpage accessed through a decoy routing session, but also mini-
mize the latencies caused by the station itself. We give an overview
of the comparison between Slitheen and previous systems in Ta-
ble 1.

While Rebound also takes steps to minimize latency by stor-
ing a queue of downstream data from the covert destination, the
use of their system is trivial to detect by a minimally capable pas-
sive adversary. Rebound traffic differs radically from typical web-
browsing traffic in both the amount of upstream data sent by the
client to provide space for inserted downstream data, and also the
amount of HTTP error messages. Slitheen relays information to
and from the covert destination in a way that does not deviate at all
from a typical access to the specific overt site in use, providing a
much more secure defense against passive attacks.

Our system defends against active attacks as well as, or better,
than all existing decoy routing systems. Rebound is the only other
system that actively maintains the connection between the client
and the overt site, defending against the routing-capable attacks
meant to unveil the true TCP state between the client and the overt
site. Rebound, of course, requires the client to send upstream data
in an equal amount to the downstream data she wishes to receive
in order to maintain a consistent TCP state. In addition to being
unusual web-browsing behaviour, this approach is also extremely
inefficient. ISPs often offer clients much lower bandwidth for up-
stream than downstream data.

Although Slitheen does not allow asymmetric flows, and con-
tinues to require in-line blocking of downstream data, we argue
that these requirements are growing less prohibitive towards the
deployment of decoy routing stations as the popularity of special-
ized traffic shaping tools increases. Companies such as Sandvine2

have developed highly efficient DPI boxes that would allow a par-
ticipating ISP to detect tagged flows and easily redirect them to a
Slitheen relay. They also provide service providers with the abil-
ity to force flow symmetry or share a flow’s state between multiple
DPI boxes [17], as long as the traffic in both directions crosses their
area of influence. We note that this is very likely if the stations are
deployed in close proximity to the overt sites. Furthermore, the
modifications to the Telex tagging procedure to detect man-in-the-
middle attacks described in Section 4.3 also serves to detect route
asymmetry. In the case of an asymmetric route, the TLS Finished
message hash to the client will not contain the additional tag-seeded
input, allowing the client to terminate the flow or complete it with-
out leaking their usage of the system.

5. IMPLEMENTATION
We developed a proof-of-concept implementation of our system

and tested the relay station and client on desktop machines running
Ubuntu 14.04. This implementation serves to demonstrate that our
design behaves as expected, and provides a basis for our evaluations
in the following section. Our code is available online for reuse and
analysis.3

5.1 Client
Our implementation of the client consists of two distinct parts:

the overt user simulator (OUS) that repeatedly connects to overt
sites, and a SOCKS proxy frontend that relays SOCKS connec-
tion requests and data between the client’s browser and the OUS.
The OUS takes data from the SOCKS frontend and inserts it into
X-Slitheen headers of outgoing HTTP requests. It then takes down-
stream data from the received resources of content type “slitheen”
and returns this to the SOCKS frontend, which then sends this data
to the browser. To allow the browser to send multiple simultaneous
requests, we assign a stream ID to each connection. When the relay
station receives downstream data for a particular stream, it includes
the stream ID along with the data in the replaced resource, allowing
the SOCKS frontend at the client side to demultiplex streams from
the data received from the OUS.

For the tagging procedure, we modified OpenSSL4 to allow the
client to specify the value of the random nonce in the ClientHello
message, as well as supply a given value for the client DH param-
eter. Although there are many algorithms available to negotiate a
TLS master secret, our proof-of-concept implementation only al-
lows the use of the DH key exchange methods (including the pop-
ular ECDHE). Other methods could easily be added to our system
to expand the range of overt sites used by the client. Our modifi-
cations to OpenSSL take the form of user-defined callbacks, mini-
mizing both the lines of code we had to alter in the source, as well
as reducing any unintended consequences from our modifications.
To send an untagged flow, the client can simply refrain from setting
the provided callbacks, resulting in OpenSSL’s default behaviour.
Our modifications consisted of additions only, introducing 46 lines
of code to OpenSSL. The callback functions and helper code for
generating the Telex-style tags are about 2200 lines of C code.

2https://www.sandvine.com/
3The code is currently available at https://crysp.uwaterloo.ca/
software/slitheen.
4http://openssl.org/

We used the PhantomJS headless browser5 as the basis for our
OUS, although more common browsers such as Firefox6 or Chrome7

could be adapted for use as an OUS as well. To tag the TLS sessions
established by the OUS, we made a few modifications to the Phan-
tomJS source code to add options that set the OpenSSL ClientHello
and ClientKeyExchange callbacks to the previously described func-
tions. Our modifications consisted only of additions and introduced
43 lines of C++ code to PhantomJS and 56 lines of code to its ver-
sion of Qtbase. We wrote a PhantomJS script consisting of 55 lines
of Javascript to read data from the SOCKS frontend and add it to
outgoing request headers. When the script receives a resource, it
sends the contents of all resources of content type “slitheen” to the
SOCKS frontend through a WebSocket [8].

The SOCKS frontend receives connection requests and data from
the browser and writes it to a named pipe for the OUS to process.
It assigns each new connection a stream ID and sends that along
with the data to the OUS to send to the relay station. The SOCKS
frontend reads downstream data from the OUS and first demulti-
plexes it by stream ID before sending it to the browser. We wrote
the SOCKS frontend in approximately 500 lines of C code.

5.2 Slitheen Relay Station
We implemented the Slitheen station in approximately 3200 lines

of C code. The station is responsible for recognizing and pro-
cessing tagged TLS handshakes, proxying data to censored sites,
and monitoring and replacing upstream and downstream applica-
tion data to overt sites. When the station detects a tagged flow, it
saves the source and destination addresses and ports in a flow ta-
ble, to later identify packets in the same decoy routing session. The
station continues to passively observe the remainder of the TLS
handshake and then uses the tag-derived client secret and observed
server handshake messages to compute the TLS master secret for
the session, saving it in the flow table.

After verifying the TLS Finished message from both sides of the
connection, the Slitheen station begins to monitor HTTP GET re-
quests from the client for upstream data, and stores any downstream
response from the blocked server in a censored content queue. Once
the station receives the client’s Slitheen ID, it saves this informa-
tion in the flow table in order to later identify the stream IDs that
can replace downstream resources. As Slitheen reuses the TCP/IP
headers from the overt site, we have no need to modify kernel code
to set up a forged TCP state (as Telex requires). Application data is
simply swapped into TCP segments as they are read from the inter-
face, and sent back out to their destination with a recomputed TCP
checksum.

Once the client has terminated the connection with the overt site
by sending a TCP FIN packet, the station removes the flow from
the table. We save session tickets and session IDs to allow clients
to resume TLS sessions for subsequent requests to the same server.

6. EVALUATION

6.1 Bandwidth
The amount of downstream data a client can receive in a single

page load is dependent on the amount and size of the leaf resources
of the overt page. We visited the Alexa8 top 10,000 TLS sites that
support our implemented ciphersuites and measured the amount of
downstream data available to a Slitheen client when using the site

5http://phantomjs.org/
6https://www.mozilla.org/firefox/
7https://www.google.com/chrome/
8http://www.alexa.com/

Table 2: Comparison of the total amount of content (in bytes, with means and standard deviations over 100 samples indicated) in a page,
the amount of potentially replaceable leaf content, and the amount of leaf content actually replaced by the Slitheen station. Sites such as
Facebook offer a significant amount of leaf content, but large TLS records prevent Slitheen from replacing any leaf content with downstream
data from the censored site. Clients should select overt destinations that not only have a large amount of leaf content, but also perform well
in practice. In the last two columns, we give the percentage of leaf content that was actually replaced by the relay station and the percentage
of total content that was replaced by the relay station.

Site name Total content (bytes) Leaf content (bytes) Replaceable content (bytes) % leaf content replaced % total replaced

Yandex 130000± 40000 16000± 8000 50± 10 0.4±0.2 0.04±0.02
Reddit 560000± 60000 150000± 20000 100000± 10000 70±10 19±3
Netflix 240000± 80000 40000± 30000 261± 0 0.7±0.2 0.12±0.03
Quora 800000± 500000 110000± 90000 110000± 90000 99±5 20±10
Gmail 40000± 10000 8800± 100 7700± 100 87.7±0.2 23±9
Wikipedia 74000± 8000 24000± 2000 24000± 2000 100±0 33±4
Yahoo 1300000± 700000 400000± 100000 400000± 100000 100.0±0.2 40±20
Facebook 600000± 200000 40000± 10000 0± 0 0±0 0±0

0.00

0.25

0.50

0.75

1.00

1kB 10kB 100kB 1MB 10MB
Downstream leaf content (bytes)

C
D

F

Figure 4: Cumulative distribution function of the potential down-
stream bandwidth for proxied data provided by the Alexa top
10,000 TLS sites.

as an overt destination. To collect these results, we used PhantomJS
to capture the size of HTTP responses from each site. We then
measured the total amount of possible downstream bandwidth from
each site as the sum of the sizes of all replaceable resources for the
page in bytes. We note that this is the maximum amount of potential
downstream bandwidth as some resources may not be accessible
on a path that contains the decoy router, and not all leaf HTTP
responses will be replaceable if the headers are contained in a TLS
record that is split across multiple packets.

We give a cumulative distribution function of the amount of leaf
content in bytes for the top 1,000 sites in Figure 4. About 25%
of sites offer 1 MB or more of potentially replaceable content, giv-
ing us a fair amount of downstream bandwidth for relaying content
from censored sites to the client. In total, we found that about 40%
of the content from all 1,000 sites was leaf content. This suggests
that censored sites will load in a little more than twice the amount
of time they normally would.

To test the actual replaceability of data, we accessed the Alexa
top 500 TLS sites as overt destinations and counted the total bytes
received, the total amount of leaf content, and the amount of leaf
content that was replaced by the system. We give a cumulative
distribution function of the amount of total bytes in a full page load,

0.00

0.25

0.50

0.75

1.00

1kB 10kB 100kB 1MB 10MB
Replaceable leaf content (bytes)

C
D

F
Type

Total
Leaf
Replaced

Figure 5: Cumulative distribution function of the leaf content that
was actually replaced by the relay station in our tests. We give
the total number of bytes, the bytes of leaf content, and the bytes
replaced with downstream covert content for each of the Alexa top
500 TLS sites.

the amount of leaf-content bytes, and the amount of replaced bytes
in Figure 5. We give the detailed results of eight popular sites in
Table 2. We found that the relay station’s ability to replace leaf
resources varied significantly among sites. Sites such as yandex.
ru, netflix.com, and facebook.com were ill-suited to our system;
factors such as TLS record sizes and packet re-ordering prevented
us from detecting and replacing leaf resources at the relay station.
Facebook was the most extreme example, where none of the leaf
content was replaceable by the system. Upon further investigation,
we noticed that all leaf content response headers from this site were
encrypted in a large record along with the response body and spread
across multiple packets, making its content type immutable by the
Slitheen station. For wikipedia.org, yahoo.com, and quora.com, on
the other hand, almost all of the leaf content in our 100 trials was
replaced by the Slitheen station. While the station missed some of
the leaf content for gmail.com and reddit.com, most leaf resources
were replaced by the station without a loss of HTTP state. These
findings suggest that the selection of an overt destination should

0.00

0.25

0.50

0.75

1.00

450 500 550

Decoy page download time (ms)

C
D

F

Type
Decoy

Regular

(a) Latency measurements for www.wikipedia.org

0.00

0.25

0.50

0.75

1.00

600 700 800 900 1000

Decoy page download time (ms)

C
D

F

Type
Decoy

Regular

(b) Latency measurements for gmail.com

0.00

0.25

0.50

0.75

1.00

0 2500 5000 7500 10000

Decoy page download time (ms)

C
D

F

Type
Decoy

Regular

(c) Latency measurements for www.yahoo.com

Figure 6: Cumulative distribution functions of the page load time of
three overt destinations as both a decoy access and a regular access.
The CDF shows a minimal difference in the latency distributions of
the two types of access, and a K-S test fails to find a difference in
the latency distributions due to the Slitheen station replacement and
processing.

depend on both the amount of leaf content on the site as well as the
amount of replaceable content determined through use.

6.2 Latency Measurements
As mentioned in the previous section, Slitheen reduces latency

from two sources. By queueing downstream data from the covert
destination, Slitheen removes the latency that comes from fetching
content from a possible distant censored site. We also minimize
the latency introduced by the relay station itself by not waiting for
data to be proxied to the covert destination, but rather queueing up
previously collected proxy data for the client to be replaced as soon
as incoming packets from the overt site arrive. Our results show
that the encryption and replacement procedures do not add enough
latency to identify the usage of Slitheen.

We measured the time it took to fully load the overt destina-
tion both as an overt site for tagged flows whose leaf resources
were replaced with proxied data, and from a regular, untagged ac-
cess. We tested three different overt destinations: www.wikipedia.
org, gmail.com, and www.yahoo.com 100 times each and give the
CDF of these load times in Figure 6. We performed a two-sided
Kolmogorov-Smirnov test on the collected data in order to deter-
mine whether the relay station induced a different latency distri-
bution for decoy accesses and measured a D-value of 0.11 and a
p-value of 0.58 for www.wikipedia.org, a D-value of 0.12 and a p-
value of 0.47 for gmail.com, and a D-value of 0.07 and a p-value of
0.97 for www.yahoo.com. These results indicate that the K-S test
fails to find any significant difference in the latency distributions of
the overt destination between its use as a regular or an overt site in
a decoy routing session.

7. CONCLUSION
Slitheen is the first decoy routing system to provide a defense

against latency analysis and website fingerprinting attacks. We
mimic the packet sequence of a regular visit to the overt site by
replacing the site’s actual packets in response to valid resource
requests with downstream data from the covert destination, forc-
ing the covert datastream into the shape of the overt datastream.
Slitheen eliminates latency from the censored site by building up a
queue of downstream data and replacing the contents of TCP seg-
ments as soon as they arrive at the station. We also eliminate the
censor’s ability to use latencies or packet sequences to fingerprint
the covert site accessed through the decoy routing system.

While our system does not support asymmetric flows and re-
quires the in-line blocking of downstream data, we argue that tak-
ing the side of security in this trade-off is reasonable given the in-
creased capabilities of technology available to participant ISPs. In
return, Slitheen provides stronger defenses to known attacks than
any previous decoy routing system.

8. REFERENCES
[1] S. Aryan, H. Aryan, and J. A. Halderman. Internet censorship

in Iran: A first look. In 3rd USENIX Workshop on Free and
Open Communications on the Internet (FOCI), 2013.

[2] M. Dewhirst. Censorship in Russia, 1991 and 2001. The
Journal of Communist Studies and Transition Politics,
18(1):21–34, 2002.

[3] R. Dingledine. Obfsproxy: The next step in the censorship
arms race. https://blog.torproject.org/blog/
obfsproxy-next-step-censorship-arms-race, February 2012.
[Online; accessed 29-February-2016].

[4] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In 13th USENIX Security
Symposium, pages 303–320, 2004.

[5] K. P. Dyer, S. E. Coull, and T. Shrimpton. Marionette: A
programmable network-traffic obfuscation system. In 24th
USENIX Security Symposium, pages 367–382, 2015.

[6] E. L. Eisenstein. The printing press as an agent of change,
volume 1. Cambridge University Press, 1980.

[7] D. Ellard, C. Jones, V. Manfredi, W. Strayer, B. Thapa,
M. Van Welie, and A. Jackson. Rebound: Decoy routing on
asymmetric routes via error messages. In Local Computer
Networks (LCN), 2015 IEEE 40th Conference on, pages
91–99, Oct 2015.

[8] I. Fette and A. Melnikov. The WebSocket Protocol. RFC
6455, December 2011.

[9] R. Fielding, J. Gettys, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1.
RFC 2616, June 1999.

[10] D. Fifield, C. Lan, R. Hynes, P. Wegmann, and V. Paxson.
Blocking-resistant communication through domain fronting.
Proceedings on Privacy Enhancing Technologies,
2015(2):46–64, 2015.

[11] D. Herrmann, R. Wendolsky, and H. Federrath. Website
fingerprinting: Attacking popular privacy enhancing
technologies with the multinomial naïve-bayes classifier. In
Proceedings of the 2009 ACM Workshop on Cloud
Computing Security, CCSW ’09, pages 31–42, 2009.

[12] A. Houmansadr, G. T. Nguyen, M. Caesar, and N. Borisov.
Cirripede: Circumvention infrastructure using router
redirection with plausible deniability. In 18th ACM
Conference on Computer and Communications Security,
CCS ’11, pages 187–200, 2011.

[13] A. Houmansadr, E. L. Wong, and V. Shmatikov. No direction
home: The true cost of routing around decoys. In 2014
Network and Distributed System Security (NDSS)
Symposium, 2014.

[14] J. Karlin, D. Ellard, A. W. Jackson, C. E. Jones, G. Lauer,
D. P. Mankins, and W. T. Strayer. Decoy routing: Toward
unblockable internet communication. In USENIX workshop
on free and open communications on the Internet, 2011.

[15] H. Mohajeri Moghaddam, B. Li, M. Derakhshani, and
I. Goldberg. Skypemorph: Protocol obfuscation for Tor
bridges. In 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pages 97–108, 2012.

[16] Z. Nabi. The anatomy of web censorship in Pakistan. In 3rd
USENIX Workshop on Free and Open Communications on
the Internet (FOCI), 2013.

[17] Sandvine. White paper: Applying network policy control to
asymmetric traffic: Considerations and solutions.
https://www.sandvine.com/downloads/general/whitepapers/
applying-network-policy-control-to-asymmetric-traffic.pdf.

[18] M. Schuchard, J. Geddes, C. Thompson, and N. Hopper.
Routing around decoys. In 2012 ACM Conference on
Computer and Communications Security, CCS ’12, pages
85–96, 2012.

[19] The Tor Project. Tor: Bridges.
https://www.torproject.org/docs/bridges. [Online; accessed
27-February-2016].

[20] The Tor Project. Torproject.org blocked by GFW in China:
Sooner or later?
https://blog.torproject.org/blog/tor-partially-blocked-china,
September 2009. [Online; accessed 27-February-2016].

[21] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and
I. Goldberg. Effective attacks and provable defenses for
website fingerprinting. In Proceedings of the 23rd USENIX
Conference on Security Symposium, SEC’14, pages
143–157, 2014.

[22] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister,
S. Cheung, F. Wang, and D. Boneh. StegoTorus: A
camouflage proxy for the Tor anonymity system. In 2012
ACM Conference on Computer and Communications
Security, CCS ’12, pages 109–120, 2012.

[23] P. Winter and S. Lindskog. How the Great Firewall of China
is blocking Tor. In 2nd USENIX Workshop on Free and Open
Communications on the Internet (FOCI), 2012.

[24] P. Winter, T. Pulls, and J. Fuss. ScrambleSuit: A
polymorphic network protocol to circumvent censorship. In
12th ACM Workshop on Workshop on Privacy in the
Electronic Society, WPES ’13, pages 213–224, 2013.

[25] E. Wustrow, C. M. Swanson, and J. A. Halderman. Tapdance:
End-to-middle anticensorship without flow blocking. In 23rd
USENIX Security Symposium, pages 159–174, 2014.

[26] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman.
Telex: Anticensorship in the network infrastructure. In 20th
USENIX Security Symposium, 2011.

