
Analysis of 802.11 Security
or Wired Equivalent Privacy

Isn’t

Nikita Borisov, Ian Goldberg,
and David Wagner

WEP Protocol

§ “Wired Equivalent Privacy”
§ Part of the 802.11
§Link-layer security protocol

Security Goals

Prevent link-layer eavesdropping
… not end-to-end security

Secondary goal: control network
access

Not always an explicit goal
Essentially, equivalent to wired access
point security

“Open Design”?

An industry-driven committee (?)
No apparent public review (X)
Resulting standard is open … (üü)
… but costs $$$ (X)
Use a well-studied cipher (üü)

Protocol Setup

Mobile
Station

Mobile
Station

Mobile
Station

Access
Point

Shared
Key

LAN

Protocol Setup

Mobile station shares key with access point
Each packet is encrypted with shared key +
initialization vector (IV)
Each packet includes an integrity check
IC fails => packet rejected
Optionally, reject all unencrypted packets

Packet Format

IV CRC-32…Payload

Key ID byte

RC4 encrypted

Problem 1: Stateless Protocol

Mobile stations and access points are
not required to keep past state
Fundamental consequence: can replay
packets
But IP allows for duplication anyway,
right?

Stream Ciphers

RC4 is a stream cipher
Expands a key into an infinite
pseudorandom keystream
To encrypt, XOR keystream with
plaintext
Random ^ Anything = Random
Encryption same as decryption

Example

“WIRELESS” = 584952454C455353

4A7D043D6FBE9C

“WIRELESS” = 584952454C455353

RC4(“foo”) = 123456789ABCDEF

RC4(“foo”) = 123456789ABCDEF

XOR

XOR

Problem 2: Linear Checksum

Encrypted CRC-32 used as integrity
check

Fine for random errors, but not
deliberate ones

CRC is linear
I.e. CRC(X^Y) = CRC(X)^CRC(Y)
RC4(k,X^Y) = RC4(k,X)^Y

Hence we can change bits in the packet

Packet Modification

Payload CRC-32

000……………00100…………………………0 010010
XOR

Modified Payload CRC-32’

Can replay modified packets!

“Integrity check” does not prevent
packet modification
Can maliciously flip bits in packets

Modify active streams!
TCP checksum: not quite linear, but
can guess right about half the time
Known plaintext for a single packet
allows to send arbitrary traffic!

What about IVs?

RC4 keystream should not be reused,
since RC4(k,X)^RC4(k,Y) = X^Y
Use initialization vector to generate
different keystream for each packet
by augmenting the key
Key = base_key || IV
Include IV (plaintext) in header

Problem 3: IV reuse

Same shared key used in both
directions

… on some installations all stations share
same key
I.e. a “network password”

Some implementations reset IV to 0
when initialized
Easy to find collisions!

IV collision

Two packets P1 and P2 with same IV
C1 = P1 xor RC4(k||IV)
C2 = P2 xor RC4(k||IV)
C1 xor C2 = P1 xor P2
Known plaintext P1 gives P2, or use
statistical analysis to find P1 and P2
Even easier if you have three packets!

Implementation bug or design
flaw?

What if random IVs were used?
IV space – 224 possibilities
Collision after 4000 packets
Rough estimate: a busy AP sends 1000
packets/sec
Collision every 4s!
Even with counting IV (best case),
rollover every few hours

IV collisions, continued

If we have 224 known plaintexts, can
decrypt every packet

Becomes more of a problem if stronger
crypto (ie. 128-bit RC4) is deployed

How to get known plaintext?
IP traffic pretty predictable
Authentication challenge?
Send packets from outside?

Attack from Both Ends

Mobile
Station

Access
Point

Internet Evil 1

Evil 2

PacketPacket

Packet

Problem 4: Encryption Oracle

Access Points encrypts packets
coming from the LAN before sending
over air
LAN eventually connects to Internet;
attack AP from both ends
Send packets from Internet with
known content to a wireless node
Voila! Known plaintext

Attack from Both Ends (2)

Mobile
Station

Access
Point

Internet Evil 1

Evil 2

PacketPacket

Packet

Decryption Oracle??

Recall Problem 2: can flip bits in packets
Suppose we can guess destination IP in
encrypted packet
Flip bits to change IP to host we control,
send it to AP

Tricks to adjust IP checksum
AP happily forwards it to the our host
Set port 80 to bypass firewalls
Incorrect TCP checksum not checked until
we see the packet!

Attack Practicality

Sit outside competitor’s office, use a
software radio
… or an off the shelf wireless card!
With minimal work, possible to monitor
encrypted traffic
Reverse engineer firmware for active
attacks
Economies of scale: only has to be done
once!

Lessons Not Learned

Most attacks are not new!
Earlier versions of IPSEC had many
similar problems (e.g. [Bel96])

Other attacks (e.g. reaction) applicable
SSH (and many others) had CRC
checksum problems
Microsoft PPTP had RC4
directionality problems

Lessons to take away

Protocol design is harder than it looks
Can be circumvented at many points
Public review is a Good IdeaTM

Time to develop attacks is short!
Use previous work (and their failures)

Put wireless network outside firewall,
run VPN to inside firewall
Better yet, use end-to-end encryption

