Analysis of 802.11 Security or Wired Equivalent Privacy Isn’t

Nikita Borisov, Ian Goldberg, and David Wagner
WEP Protocol

- “Wired Equivalent Privacy”
- Part of the 802.11
- Link-layer security protocol
Security Goals

- Prevent link-layer eavesdropping
 - ... not end-to-end security
- Secondary goal: control network access
 - Not always an explicit goal
- Essentially, equivalent to wired access point security
"Open Design"?

- An industry-driven committee (?)
- No apparent public review (X)
- Resulting standard is open ... ()
- ... but costs $$$ (X)
- Use a well-studied cipher ()
Protocol Setup

Access Point

LAN

Shared Key

Mobile Station

Mobile Station

Mobile Station
Protocol Setup

- Mobile station shares key with access point
- Each packet is encrypted with shared key + initialization vector (IV)
- Each packet includes an integrity check
- IC fails => packet rejected
- Optionally, reject all unencrypted packets
Packet Format

IV | Payload | CRC-32

RC4 encrypted

Key ID byte
Problem 1: Stateless Protocol

- Mobile stations and access points are not required to keep past state
- Fundamental consequence: can replay packets
- But IP allows for duplication anyway, right?
Stream Ciphers

- RC4 is a stream cipher
- Expands a key into an infinite pseudorandom keystream
- To encrypt, XOR keystream with plaintext
- Random ^ Anything = Random
- Encryption same as decryption
Example

“WIRELESS” = 584952454C455353
RC4(“foo”) = 123456789ABCDEF

\[\text{RC4(“foo”) } \times \text{XOR } 4A7D043D6FBE9C \]

“WIRELESS” = 584952454C455353
Problem 2: Linear Checksum

- Encrypted CRC-32 used as integrity check
 - Fine for random errors, but not deliberate ones
- CRC is linear
 - I.e. $\text{CRC}(X^Y) = \text{CRC}(X)^\text{CRC}(Y)$
 - $\text{RC4}(k,X^Y) = \text{RC4}(k,X)^Y$
 - Hence we can change bits in the packet
Packet Modification

<table>
<thead>
<tr>
<th>Payload</th>
<th>CRC-32</th>
</tr>
</thead>
<tbody>
<tr>
<td>000……………00100…………………………0 010010</td>
<td>XOR</td>
</tr>
<tr>
<td>Modified Payload</td>
<td>CRC-32’</td>
</tr>
</tbody>
</table>
Can replay modified packets!

- “Integrity check” does not prevent packet modification
- Can maliciously flip bits in packets
 - Modify active streams!
- TCP checksum: not quite linear, but can guess right about half the time
- Known plaintext for a single packet allows to send arbitrary traffic!
What about IVs?

- RC4 keystream should not be reused, since $RC4(k,X)^{RC4(k,Y)} = X^Y$
- Use initialization vector to generate different keystream for each packet by augmenting the key
 - $Key = base_key || IV$
- Include IV (plaintext) in header
Problem 3: IV reuse

- Same shared key used in both directions
 - ... on some installations all stations share same key
 - I.e. a “network password”
- Some implementations reset IV to 0 when initialized
- Easy to find collisions!
IV collision

- Two packets P1 and P2 with same IV
- $C_1 = P_1 \text{xor} \ \text{RC4}(k||\text{IV})$
- $C_2 = P_2 \text{xor} \ \text{RC4}(k||\text{IV})$
- $C_1 \text{xor} \ C_2 = P_1 \text{xor} \ P_2$
- Known plaintext P1 gives P2, or use statistical analysis to find P1 and P2
- Even easier if you have three packets!
Implementation bug or design flaw?

- What if random IVs were used?
- IV space – 2^{24} possibilities
- Collision after 4000 packets
- Rough estimate: a busy AP sends 1000 packets/sec
- Collision every 4s!
- Even with counting IV (best case), rollover every few hours
IV collisions, continued

- If we have 2^{24} known plaintexts, can decrypt every packet
 - Becomes more of a problem if stronger crypto (ie. 128-bit RC4) is deployed
- How to get known plaintext?
- IP traffic pretty predictable
- Authentication challenge?
- Send packets from outside?
Attack from Both Ends

Access Point

Packet

Mobile Station

Packet

Internet

Packet

Evil 1

Packet

Evil 2
Problem 4: Encryption Oracle

- Access Points encrypts packets coming from the LAN before sending over air.
- LAN eventually connects to Internet; attack AP from both ends.
- Send packets from Internet with known content to a wireless node.
- Voila! Known plaintext.
Attack from Both Ends (2)
Recall Problem 2: can flip bits in packets
Suppose we can guess destination IP in encrypted packet
Flip bits to change IP to host we control, send it to AP
 Tricks to adjust IP checksum
AP happily forwards it to the our host
Set port 80 to bypass firewalls
Incorrect TCP checksum not checked until we see the packet!
Attack Practicality

- Sit outside competitor's office, use a software radio
- ... or an off the shelf wireless card!
- With minimal work, possible to monitor encrypted traffic
- Reverse engineer firmware for active attacks
- Economies of scale: only has to be done once!
Lessons Not Learned

- Most attacks are not new!
- Earlier versions of IPSEC had many similar problems (e.g. \([\text{Bel96}]\))
 - Other attacks (e.g. reaction) applicable
- SSH (and many others) had CRC checksum problems
- Microsoft PPTP had RC4 directionality problems
Lessons to take away

- Protocol design is harder than it looks
- Can be circumvented at many points
- Public review is a Good Idea™
 - Time to develop attacks is short!
- Use previous work (and their failures)
 - Put wireless network outside firewall, run VPN to inside firewall
 - Better yet, use end-to-end encryption